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Abstract The paper presents a general multiplicative bias reduction strategy for
nonparametric regression. The approach is most effective when applied to an over-
smooth pilot estimator, for which the bias dominates the standard error. The prac-
tical usefulness of the method was demonstrated in [2] in the context of estimating
energy spectra. For such data sets, it was observed that the method could decrease
significantly the bias with only negligible increase in variance. This paper presents
the theoretical analysis of that estimator. In particular, we study the asymptotic prop-
erties of the bias corrected local linear regression smoother, and prove that it has zero
asymptotic bias and the same asymptotic variance as the local linear smoother with
with a suitably adjusted bandwidth. Simulations show that our asymptotic results
are available for modest sample sizes.

1 Introduction

In nonparametric regression, the bias-variance tradeoff of linear smoothers such as
kernel-based regression smoothers, wavelet based smoother or spline smoothers, is
generally governed by a user-supplied parameter. This parameter is often called the
bandwidth, which we will denote by h. As an example, assuming that the regression
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function m is locally twice continuously differentiable at a point x, the local linear
smoother with bandwidth h and kernel K has conditional bias at that point

h2

2
m′′(x)

∫
u2K(u)du+op(h2)

and conditional variance
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σ2(x)
f (x)

∫
K2(u)du+op

(
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nh

)
where f stands for the density of the (one-dimensional) explanatory variable X and
σ2(x) is the conditional variance of the response variable given X = x. See for ex-
ample the book of [7]. Since the bias increases with the second order derivative
of the regression function, the local linear smoother tends to under-estimate in the
peaks and over-estimate in the valleys of the regression function. See for example
[25, 26, 27].

The resulting bias in the estimated peaks and valleys is troublesome in some applica-
tions, such as the estimation of energy spectrum from nuclear decay. That example
motivates the development of our multiplicative bias correction methodology. The
interested reader is referred to [2] for a more detailed description and analysis.

All nonparametric smoothing methods are generally biased. There are a large num-
ber of methods to reduce the bias, but most of them do so at the cost of an increase
in the variance of the estimator. For example, one may choose to undersmooth the
energy spectrum. Undersmoothing will reduce the bias but will have a tendency of
generating spurious peaks. One can also use higher order smoothers, such as local
polynomial smoother with a polynomial of order larger than one. While again this
will lead to a smaller bias, the smoother will have a larger variance. Another ap-
proach is to start with a pilot smoother and to estimate its bias by smoothing the
residuals ([6, 3, 4]). Subtracting the estimated bias from the smoother produces a
regression smoother with smaller bias and larger variance. For the estimation of an
energy spectrum, the additive bias correction and the higher order smoothers have
the unfortunate side effect of possibly generating a non-positive estimate.

An attractive alternative to the linear bias correction is the multiplicative bias cor-
rection pioneered by [20]. Because the multiplicative correction does not alter the
sign of the regression function, this type of correction is particularly well suited for
adjusting non-negative regression functions. [19] showed that if the true regression
function has four continuous derivatives, then the multiplicative bias reduction is
operationally equivalent to using an order four kernel. And while this does remove
the bias, it also increases the variance because of the roughness of such a kernel.

Many authors have extended the work of [19]. [9, 10] propose to use a parametri-
cally guided local linear smoother and Nadaraya-Watson smoother by starting with
a parametric pilot. This approach is extended to a more general framework which in-
cludes both multiplicative and additive bias correction by [21] (see also [16, 28, 22]
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for an extension to time series conditional variance estimation and spectral estima-
tion). For multiplicative bias correction in density estimation and hazard estimation,
we refer the reader to the works of [11, 12, 17, 23, 24].

Although the bias-variance tradeoff for nonparametric smoothers is always present
in finite samples, it is possible to construct smoothers whose asymptotic bias con-
verges to zero while keeping the same asymptotic variance. [13] has exhibited a
nonparametric density estimator based on multiplicative bias correction with that
property, and has shown in simulations that his estimator also enjoys good finite
sample properties. [2] adapts the estimator from [13] to nonparametric regression
with aim to estimate energy spectra. They illustrate the benefits of their approach on
real and simulated spectra. The goal of this paper is to study the asymptotic prop-
erties of that estimator. It is worth pointing out that these properties have already
been studied by [20] for fixed design and further by [19]. We emphasize that there
are two major differences between our work and that of [19].

• First, we do not add regularity assumptions on the target regression function. In
particular, we do not assume that the regression function has four continuous
derivatives as in [19].

• Second, we show that the multiplicative bias reduction procedure performs a bias
reduction with no cost to the asymptotic variance. It is exactly the same as the
asymptotic variance of the local linear estimate.

Finally, we note that we show a different asymptotic behavior under less restrictive
assumptions than those found in [19]. Moreover our results and proofs are different
from the above referenced works.

This paper is organized as follows. Section 2 introduces the notation and defines
the estimator. Section 3 gives the asymptotic behavior of the proposed estimator.
A brief simulation study on finite sample comparison is presented in Section 4.
The interested reader is referred to Section 6 where we have gathered the technical
proofs.

2 Preliminaries

2.1 Notations

Let (X1,Y1), . . . ,(Xn,Yn) be n independent copies of the pair of random variables
(X ,Y ) with values in R×R. We suppose that the explanatory variable X has proba-
bility density f and model the dependence of the response variable Y to the explana-
tory variable X through the nonparametric regression model

Y = m(X)+ ε. (1)
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We assume that the regression function m(·) is smooth and that the disturbance ε

is a mean zero random variable with finite variance σ2 that is independent of the
covariate X . Consider the linear smoothers for the regression function m(x) which
we write as

m̂(x) =
n

∑
j=1

ω j(x;h)Yj,

where the weight functions ω j(x;h) depend on a bandwidth h. If the weight func-
tions are such that ∑

n
j=1 ω j(x;h) = 1 and ∑

n
j=1 ω j(x;h)2 = (nh)−1τ2, and if the dis-

turbances satisfy the Lindeberg’s condition, then the linear smoother obeys the cen-
tral limit theorem

√
nh

(
m̂(x)−

n

∑
j=1

w j(x;h)m(X j)

)
d−→N (0,τ2) as n→ ∞. (2)

We can use (2) to construct asymptotic pointwise confidence intervals for the un-
known regression function m(x). But unless the limit of the scaled bias

b(x) = lim
n−→∞

√
nh

(
n

∑
j=1

w j(x;h)m(X j)−m(x)

)
,

which we call the asymptotic bias, is zero, the confidence interval[
m̂(x)−Z1−α/2

√
nhτ, m̂(x)+Z1−α/2

√
nhτ

]
will not cover asymptotically the true regression function m(x) at the nominal 1−α

level (Z1−α/2 stands for the (1−α/2)-quantile of the N (0,1) distribution). The
construction of valid pointwise 1−α confidence intervals for regression smoothers
is another motivation for developing estimators with zero asymptotic bias.

2.2 Multiplicative bias reduction

Given a pilot smoother with bandwidth h0 for the regression function m(x),

m̃n(x) =
n

∑
j=1

ω j(x;h0)Yj,

consider the ratio Vj =
Y j

m̃n(X j)
. That ratio is a noisy estimate of the inverse relative

estimation error of the smoother m̃n at each of the observations, m(X j)/m̃n(X j).
Smoothing Vj using a second linear smoother, say

α̂n(x) =
n

∑
j=1

ω j(x;h1)Vj,
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produces an estimate for the inverse of the relative estimation error that can be used
as a multiplicative correction of the pilot smoother. This leads to the (nonlinear)
smoother

m̂n(x) = α̂n(x)m̃n(x). (3)

The estimator (3) was first studied for fixed design by [20] and extended to the
random design by [19]. In both cases, they assumed that the regression function had
four continuous derivatives, and show an improvement in the convergence rate of
the bias corrected Nadaraya-Watson kernel smoother. The idea of multiplicative bias
reduction can be traced back to [9, 10], who proposed a parametrically guided local
linear smoother that extended a parametric pilot regression estimate with a local
polynomial smoother. It is showed that the resulting regression estimate improves
on the naı̈ve local polynomial estimate as soon as the pilot captures some of the
features of the regression function.

3 Theoretical Analysis of Multiplicative Bias Reduction

In this section, we show that the multiplicative smoother has smaller bias with es-
sentially no cost to the variance, assuming only two derivatives of the regression
function. While the derivation of our results is for local linear smoothers, the tech-
nique used in the proofs can be easily adapted for other linear smoothers, and the
conclusions remain essentially unchanged.

3.1 Assumptions

We make the following assumptions:

1. The regression function is bounded and strictly positive, that is, b≥m(x)≥ a> 0
for all x.

2. The regression function is twice continuously differentiable everywhere.
3. The density of the covariate is strictly positive on the interior of its support in the

sense that f (x)≥ b(K )> 0 over every compact K contained in the support of
f .

4. ε has finite fourth moments and has a symmetric distribution around zero.
5. Given a bounded symmetric probability density K(·), consider the weights

ω j(x;h) associated to the local linear smoother. That is, denote by Kh(·) =
K(·/h)/h the scaled kernel by the bandwidth h and define for k = 0,1,2,3 the
sums

Sk(x)≡ Sk(x;h) =
n

∑
j=1

(X j− x)kKh(X j− x).

Then
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ω j(x;h) =
S2(x;h)− (X j− x)S1(x;h)
S2(x;h)S0(x;h)−S2

1(x;h)
Kh(X j− x).

We set
ω0 j(x) = ω j(x;h0) and ω1 j(x) = ω j(x;h1).

6. The bandwidths h0 and h1 are such that

h0→ 0, h1→ 0, nh0→ ∞, nh3
1→ ∞,

h1

h0
→ 0 as n→ ∞.

The positivity assumption (assumption 1) on m(x) is classical when we perform
a multiplicative bias correction. It allows to avoid that the terms Yj/m̃n(X j) blows
up. Of course, the regression function might cross the x-axis. For such a situation,
[10] proposes to shift all response data Yi a distance a, so that the new regression
function m(x)+ a does not any more intersect with the x-axis. Such a method can
also be performed here. Assumptions 2–4 are standard to obtain rate of convergence
for nonparametric estimators. Assumption 5 means that we conduct the theory for
the local linear estimate. The results can be generalized to other linear smoothers.
Assumption 6 is not restrictive since it is satisfied for a wide range of values of h0
and h1.

3.2 A technical aside

The proof of the main results rests on establishing a stochastic approximation of
estimator (3) in which each term can be directly analyzed.

Proposition 3.1 We have

m̂n(x) = µn(x)+
n

∑
j=1

ω1 j(x)A j(x)+
n

∑
j=1

ω1 j(x)B j(x)+
n

∑
j=1

ω1 j(x)ξ j,

where µn(x), conditionally on X1, . . . ,Xn is a deterministic function, A j, B j and ξ j
are random variables. Under condition nh0 → ∞, the remainder ξ j converges to 0
in probability and we have

m̂n(x) = µn(x)+
n

∑
j=1

ω1 j(x)A j(x)+
n

∑
j=1

ω1 j(x)B j(x)+OP

(
1

nh0

)
.

Remark 1. A technical difficulty arises because even though ξ j may be small in
probability, its expectation may not be small. We resolve this problem by showing
that we only need to modify ξ j on a set of vanishingly small probability to guarantee
that its expectation is also small.
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Definition 3.1 Given a sequence of real numbers an, we say that a sequence of
random variables ξn = op(an) if for all fixed t > 0,

limsup
n−→∞

P[|ξn|> tan] = 0.

We will need the following Lemma.

Lemma 3.1 If ξn = op(an), then there exists a sequence of random variables ξ ?
n

such that
limsup

n−→∞

P[ξ ?
n 6= ξn] = 0 and E[ξ ?

n ] = o(an).

We shall use the following notation

E?[ξn] = E[ξ ?
n ].

3.3 Asymptotic behavior

We deduce from Proposition 3.1 and Lemma 3.1 the following Theorem.

Theorem 3.1 Under the assumptions (1)-(6), the estimator m̂n satisfies:

E? (m̂n(x)|X1, . . . ,Xn) = µn(x)+Op

(
1

n
√

h0h1

)
+Op

(
1

nh0

)
and

V?(m̂n(x)|X1, . . . ,Xn) = σ
2

n

∑
j=1

w2
1 j(x)+Op

(
1

nh0

)
+op

(
1

nh1

)
.

We deduce from Theorem 3.1 that if the bandwidth h0 of the pilot estimator con-
verges to zero much slower than h1, then m̂n has exactly the same asymptotic vari-
ance as the local linear smoother of the original data with bandwidth h1. However,
for finite samples, the two step local linear smoother can have a slightly larger vari-
ance depending on the choice of h0. For the bias term, a limited Taylor expansion of
µn(x) leads to the following result.

Theorem 3.2 Under the assumptions (1)-(6), the estimator m̂n satisfies:

E? (m̂n(x)|X1, . . . ,Xn) = m(x)+op(h2
1).

Remark 2. Note that we only assume that the regression function is twice continu-
ously differentiable. We do not add smoothness assumptions to improve the conver-
gence rate from Op(h2

1) to op(h2
1). In that manner, our analysis differs from that of

[19] who assumed m to be four times continuously differentiable to conclude that
the bias corrected smoother converged at the Op(h4

1) rate. For a study of the local
linear estimate in the presence of jumps in the derivative, we refer the reader to [5].
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Remark 3. Under similar smoothness assumptions, [8, 10, 21] have provided a com-
prehensive asymptotic behavior for the multiplicative bias corrected estimator with
a parametric guide. They obtain the same asymtptotic variance as the local linear
estimate and a bias reduction provided the parametric guide captures some of the
features of the regression function. We obtain a similar result when the rate of decay
of the bandwidth of the pilot estimate is carefully chosen.

Combining Theorem 3.1 and Theorem 3.2, we conclude that the multiplicative ad-
justment performs a bias reduction on the pilot estimator without increasing the
asymptotic variance. The asymptotic behavior of the bandwidths h0 and h1 is con-
strained by assumption 6. However, it is easily seen that this assumption is satisfied
for a large set of values of h0 and h1. For example, the choice h1 = c1n−1/5 and
h0 = c0n−α for 0 < α < 1/5 leads to

E? (m̂n(x)|X1, . . . ,Xn)−m(x) = op(n−2/5)

and
V?(m̂n(x)|X1, . . . ,Xn) = Op

(
n−4/5

)
.

Remark 4. Estimators with bandwidths of order O(n−α) for 0 < α < 1/5 are over-
smoothing the true regression function, and as a result, the magnitude of their biases
are of larger than the magnitude of their standard deviations. We conclude that the
multiplicative adjustment performs a bias reduction on the pilot estimator.

4 Numerical examples

Results presented in the previous sections show that our procedure allows to reduce
the bias of nonparametric smoothers at no cost for the asymptotic variance. The
simulation study in this section shows that the practical benefits of this asymptotic
behavior already emerge at modest sample sizes.

4.1 Local study

To illustrate numerically the reduction in the bias and associate (limited) increase of
the variance achieved by the multiplicative bias correction, consider estimating the
regression function

m(x) = 5+3|x|5/2 + x2 +4cos(10x)

at x = 0 (see Figure 1).
The local linear smoother is known to under-estimate the regression function at lo-
cal maxima and over-estimate local minima, and hence, this example provides a
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Fig. 1 The regression function to be estimated.

good example to explore bias-reduction variance-increase trade-off. Furthermore,
because the second derivative of this regression function is continuous but not dif-
ferentiable at the origin, the results previously obtained by [20] do not apply.

For our Monte-Carlo simulation, the data are generated according to the model

Yi = m(Xi)+ εi, i = 1, . . . ,100,

where εi are independent N (0,1) variables, and the covariates Xi are independent
Uniform random variables on the interval [−1,1].

We first consider the local linear estimate and we study its performances over a
grid of bandwidths H = [0.005,0.1]. For the new estimate, the theory recommends
to start with an oversmooth pilot estimate. In this regard, we take h0 = 0.1 and
study the performance of the multiplicative bias corrected estimate for h1 ∈H1 =
[0.005,0.12]. To explore the stability of our two stages estimator with respect to h0,
we also consider the choice h0 = 0.02. For such a choice, the pilot estimate clearly
undersmoothes the regression function. For both estimates, we take the Gaussian
kernel K(x) = exp(−x2/2)/

√
2π .

We conduct a Monte Carlo study to estimate bias and variance of each estimate at
x = 0. To this end, we compute the estimate at x = 0 for 1000 samples (Xi,Yi), i =
1, . . . ,100. The same design Xi, i = 1, . . . ,100 is used for all the sample. The bias at
point x = 0 is estimated by subtracting m(0) at the mean value of the estimate at x =
0 (the mean value is computed over the 1000 replications). Similarly we estimate the
variance at x = 0 by the variance of the values of the estimate at this point. Figure 2
presents squared bias, variance and mean square error of each estimate for different
values of bandwidths h for the local linear smoother and h1 for our estimate.
Comparing panel (a) and (c) in Figure 2, we see that if the pilot smoother under-
estimates the regression function, then the bias is small but the variance is large. For
such a pilot smoother, applying a bias correction does not provide any benefit, and
the resulting estimator can be worse than a good local linear smoother. Intuitively,
the bias of the pilot smoother is already small at the cost of a larger variance, and
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Fig. 2 Mean square error (dotted line), squared bias (solid line) and variance (dashed line)
of the local linear estimate (left) and multiplicative bias corrected estimate with h0 = 0.1
(center) and h0 = 0.02 (right) at point x = 0.

operating a bias reduction provides little benefit to the bias and can only make the
variance worse, leading to a suboptimal smoother.
Comparing panel (a) and (b) in Figure 2, we note that the squared bias is smaller for
the bias corrected smoother over the standard local linear smoother, while the vari-
ance of both smoothers are essentially the same. As a result, the mean squared error
for the bias corrected smoother is smaller than that of the local linear smoother. This
shows that the asymptotic properties outlined in theorems 3.1 and 3.2 emerge for
moderate sample sizes. Table 1 quantifies the benefits of the bias corrected smoother
over the classical local linear smoother.

MSE Bias2 Variance
LLE 0.130 0.031 0.098

MBCE 0.068 0.003 0.065

Table 1 Optimal mean square error (MSE) for the local linear estimate (LLE) and the
multiplicative bias corrected estimate (MBCE) with h0 = 0.1 at point x = 0.

We conclude our local study by comparing the multiplicative bias correction smoother
starting from a nonparametric pilot with the multiplicative bias correction smoother
starting from a parametric model, as suggested by Glad [10]. Specifically, we com-
pare our smoother to multiplicative bias smoothers starting with the following three
parametric models:

• first, the guide is chosen correctly and belong to the true parametric family:

m̃1
n(x) = β̂0 + β̂1|x|5/2 + β̂2x2 + β̂3 cos(10x);
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• second, we consider a linear parametric guide (which is obviously wrong):

m̃2
n(x) = β̂0 + β̂1x;

• finally, we use a more reasonable guide, not correct, but that can reflect some a
priori idea on the regression function

m̃3
n(x) = β̂0 + β̂1x+ β̂2x2 + . . .+ β̂8x8.

All the estimates β̂ j stands for the classical least square estimates.

The multiplicative bias correction is performed on these parametric starts using the
local linear estimate. The performance of the resulting estimates is measured over
a grid of bandwidths H2 = [0.005;0.4]. Bias and variance of each estimate are still
estimated at x= 0. We keep the same setting as above and all the results are averaged
over the same 1000 replications. We display in Table 2 the optimal MSE calculated
over the grid H2.

MSE Bias2 Variance
start m̃1

n 0.052 0.000 0.052
start m̃2

n 0.129 0.031 0.098
start m̃3

n 0.090 0.019 0.071
MBCE 0.068 0.003 0.065

Table 2 Pointwise optimal mean square error at x = 0 for the multiplicative bias corrected
estimates with parametric starts m̃ j

n, j = 1,2,3, compared to a multiplicative bias corrected
smoother starting with initial bandwidth h0 = 0.1.

As expected, the performance depends on the choice of the parametric start. Un-
surprisingly, the performance of the smoother starting with the parametric guide m̃1

n
(which belongs to the true model) is best. Table 2 shows that (in term of MSE) the
estimate studied in this paper is better than the corrected estimated with parametric
start m̃2

n and m̃3
n. This suggests that in practice, when little priori information on the

target regression function is available, the method proposed in the present paper is
preferable.

4.2 Global study

The theory in Section 3 does not address the practical issue of bandwidths selection
for both the pilot smoother and the multiplicative adjustment. [2] suggests adapt-
ing existing automatic bandwidth selection procedures to this problem. There is a
large literature on automatic bandwidth selection, including [14, 15]. In this section,
we present a numerical investigation of the leave-one-out cross-validation method to
select both bandwidths h0 and h1 as to minimize the integrated square error of the es-
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timator. The resulting bias smoother is compared with a local polynomial smoother,
whose bandwidth is selected in a similar manner.

Our selection of test functions for our investigation relies on the comprehensive
numerical study of [18]. We will only compare our multiplicative bias corrected
smoother with the classical local linear smoother. In all our examples, we use a
Gaussian kernel to construct nonparametric smoothers to estimate the following re-
gression functions (see Figure 3):

(1) m1(x) = sin(5πx)
(2) m2(x) = sin(15πx)
(3) m3(x) = 1−48x+218x2−315x3 +145x4

(4) m4(x) = 0.3exp [−64(x− .25)2]+0.7exp [−256(x− .75)2].

from data Yji = m j(Xi)+ ε ji, with disturbances ε j1, . . . ,ε jn i.i.d. Normal with mean
zero and standard deviation σ j = 0.25‖m j‖2, j = 1, . . . ,4, and X1, . . . ,Xn i.i.d. Uni-
form on [−0.2,1.2].
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4.
0
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5.
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m4(x)

Fig. 3 Regression functions to be estimated.

We use a cross validation device to select both h0 and h1 by minimizing simulta-
neously over a finite grid H of bandwidths h0 and h1 the leave-one-out prediction
error. That is, given a grid H , we choose the pair (ĥ0, ĥ1) defined by

(ĥ0, ĥ1) = argmin
(h0,h1)∈H ×H

1
n

n

∑
i=1

(Yi− m̂i
n(Xi))

2.

Here m̂i
n stands for the prediction of the bias corrected smoother at Xi, estimated

without the observation (Xi,Yi). We use the Integrated Square Error (ISE)

ISE(m̂) =
∫ 1

0
(m(x)− m̂(x))2 dx,
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to measure the performance of an estimator m̂. Note that even though our estimators
are defined on the interval [−0.2,1.2] (the support of the explanatory variable), we
evaluate the integral on the interval [0,1] to avoid boundary effects.
Table 3 compares the median ISE over 1000 replication, of a standard local linear
smoother and our bias corrected smoother from a samples of size n = 100. This
table further presents the median selected bandwidth, and the ratio of the ISE.

LLE MBCE
h ISE (×100) h0 h1 ISE (×100) RISE

m1 0.023 0.957 0.050 0.032 0.735 1.316
m2 0.011 6.094 0.028 0.012 4.771 1.286
m3 0.028 2.022 0.071 0.054 1.281 1.591
m4 0.018 0.087 0.034 0.024 0.074 1.187

Table 3 Median over 1000 replications of the selected bandwidths and of the integrated
square error of the selected estimates. LLE and MBCE stands for local linear estimate
and multiplicative bias corrected estimate.

First, in all four cases, the ISE for the MBCE is smaller than that of the LLE. Second,
we note that both bandwidths for the multiplicative bias corrected are larger than
the optimal bandwidth of the classical local linear smoother. That h0 is larger is
supported by the theory, as the pilot smoother needs to oversmooth. We surmise
that larger bandwidth h1 reflects the fact that the pilot is reasonably close to the true
regression function, and hence the multiplicative correction is quite smooth and thus
can accomodate a larger bandwidth. Figure 4 displays the boxplots of the integrated
square error for each estimate.
Figure 5 presents, for the regression function m1 with n = 100 and 1000 iterations,
different estimators on a grid of points. In lines is the true regression function which
is unknown. For every point on a fixed grid, we plot, side by side, the mean over
1000 replications of our estimator at that point (left side) and on the right side of that
point the mean over 1000 replications of the local polynomial estimator. Leave-one-
out cross validation is applied to select the bandwidths h0 and h1 for our estimator
and the bandwidth h for the local polynomial estimator. We add also the interquartile
interval in order to see the fluctuations of the different estimators. In this example,
our estimator reduces the bias by increasing the peak and decreasing the valleys.
Moreover, the interquartile intervals look similar for both estimator, as predicted by
the theory.

5 Conclusion

This paper revisits the idea of multiplicative bias reduction under minimal condi-
tions and shows that it is possible to reduce the bias with little effect to the variance.
Our theory proves that our proposed estimator has zero asymptotic bias while main-
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Fig. 4 Boxplot of the integrated square error over the 1000 replications.
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Fig. 5 The solid curve represents the true regression function, our estimator is in dashed
line and local linear smoother is dotted.

taining the same asymptotic variance than the original smoother. The simulation
study in this paper show that this desirable property emerges for even modest sam-
ple sizes. The one downside of our estimator is that the computation of data driven
”optimal” bandwidths is computationally expensive.
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6 Proofs

6.1 Proof of Proposition 3.1

Write the bias corrected estimator

m̂n(x) =
n

∑
j=1

ω1 j(x)
m̃n(x)

m̃n(X j)
Yj =

n

∑
j=1

ω1 j(x)R j(x)Yj,

and let us approximate the quantity R j(x). Define

m̄n(x) =
n

∑
j=1

ω0 j(x)m(X j) = E(m̃n(x)|X1, . . . ,Xn) ,

and observe that

R j(x) =
m̃n(x)

m̃n(X j)

=
m̄n(x)

m̄n(X j)
×
(

1+
m̃n(x)− m̄n(x)

m̄n(x)

)
×
(

1+
m̃n(X j)− m̄n(X j)

m̄n(X j)

)−1

=
m̄n(x)

m̄n(X j)
× [1+∆n(x)]×

1
1+∆n(X j)

,

where

∆n(x) =
m̃n(x)− m̄n(x)

m̄n(x)
=

∑l≤n ω0l(x)εl

∑l≤n ω0l(x)m(Xl)
.

Write now R j(x) as

R j(x) =
m̄n(x)

m̄n(X j)
[1+∆n(x)−∆n(X j)+ r j(x,X j)]

where r j(x,X j) is a random variable converging to 0 to be define latter on. Given the
last expression and model (1), estimator (3) could be written as

m̂n(x) =
n

∑
j=1

ω1 j(x)R j(x)Yj

=
n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
m(X j)+

n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
[ε j +m(X j)(∆n(x)−∆n(X j))]

+
n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
(∆n(x)−∆n(X j))ε j +

n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
r j(x,X j)Yj

=µn(x)+
n

∑
j=1

ω1 j(x)A j(x)+
n

∑
j=1

ω1 j(x)B j(x)+
n

∑
j=1

ω1 j(x)ξ j.
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which is the first part of the proposition. Under assumption set forth in Section 3.1,
the pilot smoother m̃n converges to the true regression function m(x). [1] show that
this convergence is uniform over compact sets K contained in the support of the
density of the covariate X . As a result, for n large enough supx∈K |m̃n(x)− m̄n(x)| ≤
1
2 with probability 1. So a limited expansion of (1+u)−1 yields for x ∈K

R j(x) =
m̄n(x)

m̄n(X j)

[
1+∆n(x)−∆n(X j)+Op

(
|∆n(x)∆n(X j)|+∆

2
n (X j)

)]
,

thus
ξ j = Op

(
|∆n(x)∆n(X j)|+∆

2
n (X j)

)
.

Under the stated regularity assumptions, we deduce that ξ j = Op

(
1

nh0

)
, leading to

the announced result. Proposition 3.1 is proved.

6.2 Proof of Lemma 3.1

By definition limsupn−→∞P[|ξn| > tan] = 0 for all t > 0, so that a triangular array
argument shows that there exists an increasing sequence m = m(k) such that

P
[
|ξn|>

an

k

]
≤ 1

k
for all n≥ m(k).

For m(k)≤ n≤ m(k+1)−1, define

ξ
?
n =

{
ξn if |ξn|< k−1an
0 otherwise.

It follows from the construction of ξ ?
n that for n ∈ (m(k),m(k+1)−1),

P[ξn 6= ξ
∗
n ] = P[|ξn|> k−1an]≤

1
k
,

which converges to zero as n goes to infinity. Finally set k(n) = sup{k : m(k)≤ n},
we obtain

E[|ξ ?
n |]≤

an

k(n)
= o(an).

6.3 Proof of Theorem 3.1

Recall that m̂n(x) = µn(x)+∑
n
j=1 ω1 j(x)A j(x)+∑

n
j=1 ω1 j(x)B j(x)+OP

(
1

nh0

)
. Fo-

cus on the conditional bias, we get
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E(µn(x)|X1, . . . ,Xn) = µn(x), E(A j(x)|X1, . . . ,Xn) = 0

and

E(B j(x)|X1, . . . ,Xn) =
m̄n(x)

m̄n(X j)
σ

2
(

ω0 j(x)
m̄n(x)

−
ω0 j(X j)

m̄n(X j)

)
.

Since ∣∣∣∣∣ n

∑
j=1

ω1 j(x)ω0 j(x)

∣∣∣∣∣≤
√

n

∑
j=1

ω1 j(x)2

√
n

∑
j=1

ω0 j(x)2 = Op

(
1

n
√

h0h1

)
,

we deduce that

E

(
n

∑
j=1

ω1 j(x)B j(x)
∣∣∣X1, . . . ,Xn

)
= Op

(
1

n
√

h0h1

)
.

This proves the first part of the Theorem. For the conditional variance, we use the
following expansion of the two stages estimator

m̂n(x) =
n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
Yj (1+[∆n(x)−∆n(X j)])+Op

(
1

nh0

)
.

Using the fact that the residuals have four finite moments and have a symmetric
distribution around 0, a moment’s thought shows that

V(Yj [∆n(x)−∆n(X j)] |X1, . . . ,Xn) = Op

(
1

nh0

)
and

Cov(Yj,Yj [∆n(x)−∆n(X j)] |X1, . . . ,Xn) = Op

(
1

nh0

)
.

Hence

V?(m̂n(x)|X1, . . . ,Xn) = V

(
n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
Yj

∣∣∣X1, . . . ,Xn

)
+Op

(
1

nh0

)
.

Observe that the first term on the right hand side of this equality can be seen as the
variance of the two stages estimator with a deterministic pilot estimator. It follows
from [10] that

V

(
n

∑
j=1

ω1 j(x)
m̄n(x)

m̄n(X j)
Yj

∣∣∣X1, . . . ,Xn

)
= σ

2
n

∑
j=1

ω
2
1 j(x)+op

(
1

nh1

)
,

which proves the theorem.



18 N. Hengartner, E. Matzner-Løber, L. Rouvière and T. Burr

6.4 Proof of Theorem 3.2

Recall that

µn(x) = ∑
j≤n

ω1 j(x)
m̄n(x)

m̄n(X j)
m(X j).

We consider the limited Taylor expansion of the ratio

m(X j)

m̄n(X j)
=

m(x)
m̄n(x)

+(X j− x)
(

m(x)
m̄n(x)

)′
+

1
2
(X j− x)2

(
m(x)
m̄n(x)

)′′
(1+op(1)),

then

µn(x) = m̄n(x)

{
m(x)
m̄n(x)

n

∑
j=1

ω1 j(x)+
(

m(x)
m̄n(x)

)′ n

∑
j=1

(X j− x)ω1 j(x)

+
1
2

(
m(x)
m̄n(x)

)′′ n

∑
j=1

(X j− x)2
ω1 j(x)(1+op(1))

}
.

It is easy to verify that ∑
n
j=1 ω1 j(x) = 1, ∑

n
j=1(X j− x)ω1 j(x) = 0, and

Σ2(x;h1) =
n

∑
j=1

(X j− x)2
ω1 j(x) =

S2
2(x;h1)−S3(x;h1)S1(x;h1)

S2(x;h1)S0(x;h1)−S2
1(x;h1)

.

For random designs, we can further approximate (see, e.g., [27])

Sk(x,h1) =

{
hkσ k

K f (x)+op(hk) for k even
hk+1σ

k+1
K f ′(x)+op(hk+1) for k odd,

where σ k
K =

∫
ukK(u)du. Therefore

Σ2(x;h1) = h2
1

∫
u2K(u)du+op(h2

1)

= σ
2
Kh2

1 +op(h2
1),

so that we can write µn(x) as

µn(x) =m̄n(x)
{

m(x)
m̄n(x)

+
σ2

Kh2
1

2

(
m(x)
m̄n(x)

)′′
+op(h2

1)

}
=m(x)+

σ2
Kh2

1
2

m̄n(x)
(

m(x)
m̄n(x)

)′′
+op(h2

1).

Moreover
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m(x)
m̄n(x)

)′′
=

m̄2
n(x)m

′′(x)
m̄3

n(x)
−2

m̄n(x)m̄′n(x)m
′(x)

m̄3
n(x)

−m(x)m̄n(x)m̄′′n(x)
m̄3

n(x)
+2

m(x)(m̄′n(x))
2

m̄3
n(x)

and applying the usual approximations, we conclude that(
m(x)
m̄n(x)

)′′
= op(1).

Putting all pieces together, we obtain

E?(m̂n(x)|X1, . . . ,Xn)−m(x) = op(h2
1)+Op

(
1

n
√

h0h1

)
+Op

(
1

nh0

)
.

Since nh3
1 −→ ∞ and h1

h0
−→ 0, we conclude that the bias is of order op(h2

1).
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