Combining linguistic indexes to improve the performances of information

retrieval systems: a machine learning based solution

Fabienne Moreau, Vincent Claveau and Pascale Sébillot
IRISA
Campus universitaire de Beaulieu

35042 Rennes cedex, France

{Fabienne.Moreau, Vincent.Claveau, Pascale.Sebillot} @irisa.fr

Abstract

Taking into account in one same information retrieval system several linguistic indexes encoding mor-
phological, syntactic, and semantic information seems a good idea to better grasp the semantic contents
of large unstructured text collections and thus to increase performances of such a system. Therefore the
problem raised is of knowing how to automatically and efficiently combine those different information in
order to optimize their exploitations. To this end, we propose an original machine learning based method
that is able to determine relevant documents in a collection for a given query, from their positions within
the result lists obtained from each individual linguistic index, while automatically adapting its behavior
to the characteristics of the query. The different experiments that are presented here prove the interest of
our fusion method that merges the result lists, which obtains better overall and also more stable results
than those got by the better individual index.

1 Introduction

Information retrieval systems (IRSs) aim at establishing a relation between users’ information
needs (generally expressed by natural language queries) and the information contained in
documents. To this end, a very common method consists in representing the content of
documents and queries as (weighted) sets of words. In this framework, a document is said to be
relevant for a query if it shares a certain amount of terms with it. With such a mechanism, IRSs
face two problems, mainly bound to the inherent complexity of natural language. The first one
is related to polysemy: a same word can have different meanings and represent several concepts
(e.g. bug: insect or computer problem); because of such ambiguities, IRSs may
retrieve non relevant documents. The second and dual issue reflects the fact that a same idea
can be expressed by different forms (e.g. bicycle-bike). Therefore, a relevant document
can contain terms semantically close to those of the query but graphically different, and such a
document will not be retrieved by standard IRSs.

In order to better grasp the semantic contents of documents and to overcome those two
previously mentioned difficulties —especially critical in the case of large textual collections in
which those phenomena are pronounced—, a quite obvious solution is to perform a linguistic
analysis of both documents and queries, using natural language processing (NLP) techniques.

This allows one to obtain richer and more robust descriptors than simple strings of characters,
thus making a more relevant document-query matching possible. Indeed, these descriptors
should be able to highlight the fact that a same word can have different meanings or undergo
variations of form (retrieve < retrieval), structure (information retrieval
— information that is retrieved) or meaning (seek <« search).

Many previous researches have tried to enrich IRSs with different kinds of linguistic
information. However, they have often resulted in disappointing, unclear, and even sometimes
contradictory conclusions. In order to obtain more significant results concerning the contribu-
tion of linguistic information in information retrieval (IR), we propose here a new approach
for coupling NLP and IR. In contrast with the studies that generally handle only one type of
linguistic knowledge, we choose to make the most of the richness of language by combining
several levels of linguistic information through morphological, syntactic and semantic analyses.
We make the assumption that the combination of those multilevel information should offer
a richer characterization of the textual contents and consequently contribute to improve the
performances of IRSs, offering a deeper semantic access to contents.

Consequently, the underlying challenge is to optimally exploit those various pieces of
linguistic information. Indeed, they do not always all have the same impact on performances.
Moreover, some of them are complementary to retrieve relevant documents while on the
contrary others are redundant. Furthermore, integrating these linguistic pieces of information
in a single index' is a thorny issue: how does one find an homogenous way to represent
these different pieces of information in a single data structure? how does one weight their
relative importance without a priori? In order to overcome these problems, one approach
consists in building one separate index for each type of linguistic knowledge extracted from
the documents. These indexes are then used independently by an IRS and, for a given query,
their results are merged. Within such an approach, this merging step is crucial; to be efficient,
it needs to adapt automatically its behavior to the respective efficiency of each separate
considered linguistic information. To this end, in this paper, we propose a new technique to
merge the lists of documents produced by several linguistic indexes (each one corresponding to
one type of linguistic information) integrated in parallel within an IRS. Our technique is built
on top of a supervised machine learning system that automatically selects the most efficient
linguistic information to find relevant documents, taking into account for that aim some query
characteristics. This machine learning system on which this paper focusses on provides an
original and effective fusion of linguistic information, and results obtained prove the interest of
combining within an IRS different kinds of linguistic knowledge.

The remaining of the paper has the following structure: Section 2 presents some related
studies; Section 3 describes the system of supervised machine learning that we have developed
to merge the result lists of the linguistic indexes. Section 4 details the experiments that have
been conducted, presents and analyzes their results, and compare them to those of an efficient
system. Finally, Section 5 concludes on the relevance of our system to improve the perfor-
mances of IRSs.

'Following the tradition in textual IR, we use the term index as a synonym for descriptor.

2 Context and related work

In this section, we present the context of our work and some existing studies that are related to
our problematics. We focus more precisely on the use of linguistic information in IR, and on
the problem of data fusion.

2.1 NLP-IR coupling

NLP tools and techniques are generally used in IR to create richer representations of documents
and queries in order to provide a more relevant matching between them. As mentioned in in-
troduction, many studies have already tried to use linguistic information in IR. Generally, only
one type of analysis is performed: a morphological, syntactic or semantic one. Morphological
information, often obtained through a process of stemming or lemmatization (Fuller and Zobel,
1998), can help IRSs to recognize within documents and queries the different forms of a single
word and match them. As an example, a query with the term knife can be matched with a
document containing knives. Syntactic information, e.g. complex terms or noun phrases
(Perez Carballo and Strzalkowski, 2000; Fagan, 1987, inter alia), offers the advantage in IR
to take into account relations and dependencies that terms share. Thus, it makes it possible
to exceed weaknesses of the so-called traditional representation in bags of words. Last, the
integration of semantic analyses in IRSs can contribute to improve their performances while
seeking, for instance, to associate each document and query with a set of non ambiguous
meanings (cf. for example (Kilgarriff and Palmer, 2000; Sanderson, 1997)) or to add terms
semantically related to the words initially contained in the query (Gauch et al., 1999; Voorhees,
1998).

Despite the number and the diversity of the studies already conducted in the past, it remains
difficult to draw up a precise assessment of the contributions of these linguistic information in
IR. Conclusions are often contradictory and obtained results depend on numerous parameters,
like the language processed, the length of the queries, or the size of the collection. One expla-
nation of those mixed results is related to the fact that most of the existing studies generally
integrate linguistic information belonging to only one level of language. Consequently, they
only partially take into account the richness of the language since morphological, syntactic
and semantic levels are dependent on each other. Some rare studies (Strzalkowski et al., 1996)
have already proposed to fully exploit the diversity of the knowledge extracted by NLP tools
by simultaneously taking into account those three levels of linguistic analysis. However,
performed experiments have concluded that linguistic information can contribute to improve
IRS results but only in a very modest way (e.g. Strzalkowski et al. reports a +5% improve-
ment of 11-pt average precision with his system combining different linguistic representations).

More recent work (Moreau, 2006) shows the potential benefit of combining multilevel lin-
guistic representations in IRSs. Indeed, a thorough analysis of the correlations and relations
among several multilevel linguistic information has highlighted interesting cases of complemen-
tarities between these information and more particularly between morphological and semantic
information to detect relevant documents. These encouraging results allow us to postulate the
relevance of combining various linguistic representations in IR. In this paper, we propose to ex-
periment these ideas by integrating in parallel within a same IRS 12 indexes, each one resulting
of a different linguistic analysis of the documents (see details in Section 3.1). Thus, the prob-
lem raised is of knowing how to automatically and efficiently combine these different pieces

of knowledge within the IRS in order to optimize their exploitations. To this end, we propose
to merge the result lists (i.e., the lists of documents ranked by descending order of relevance
for a given query) obtained by each linguistic descriptor corresponding to one type of linguistic
information. This fusion provides a final list of results corresponding to the best documents
found by the indexes. Data fusion is nevertheless quite a complex problem, that is well-known
in IR.

2.2 Data fusion in IR

Data fusion has been exhaustively investigated in the literature, especially in the framework of
IR (for a state-of-the-art, see (Croft, 1997)). The difficulty is to find a way to combine results
of multiple searches conducted in parallel on a common data set for a given query in order to
obtain higher performances than each individual search. Each search produces an ordered list
containing the documents found to be relevant for a query. One document is associated on the
one hand with a relevance score (that represents its degree of similarity to the query) and on
the other hand with a rank corresponding to its position in the list. Different techniques have
been proposed for the fusion of these lists. Some are based on the relevance scores associated
with the documents. They generally sum all the normalized relevance scores obtained by one
document retrieved by several systems (or present in various result lists) (e.g. combSUM
algorithm (Fox and Shaw, 1994)) or multiply this sum by the number of lists that contain the
document (e.g. combMNZ algorithm (Bartell et al., 1994; Lee, 1997, inter alia)). They get a
final score for each document from which a ranking can be obtained.

However, the relevance scores provided by the different searches can sometimes be too
dissimilar to be merged easily. This is one of the reasons that has motivated other data fusion
techniques, based on the rank information. These methods consider the data fusion problem
as a multi-candidate election (where the documents are the candidates and the lists of results
the voters), and use rank-aggregation algorithms like the Borda or Condorcet counts (Aslam
and Montague, 2001). All these methods perform in an unsupervised way: they only use the
information retrieved by systems for the fusion. Their problem is that non-relevant documents
that are present in several lists are likely to obtain an important weight and to be well ranked
in the final list. To overcome these limitations, supervised data fusion techniques (Vogt and
Cottrell, 1999; Perez Carballo and Strzalkowski, 2000) calculate the final relevance score of a
document as a linear combination of its normalized scores within the different lists, themselves
weighted according to their efficiency to detect the relevant documents. The importances
given to the lists are fixed a priori (this is the supervised aspect of those approaches), and
are generally based on the individual performances of each system evaluated with the help of
relevance judgments.

Within the framework of our work, those classical methods for data fusion are problematic
for several reasons. First, with such traditional techniques, documents that are present in a
high number of result lists are favored and can get an important weight in the final result list.
However, in our case, a relevant document can be retrieved by only one index (representing
one particular linguistic information; all the other linguistic pieces of information being unable
to detect the relevant relation between the query representation and the document one). During
the fusion, a strong importance must consequently be given to this document. Moreover, in
our case, the performances of the various linguistic indexes are very dissimilar (for example,
indexes based on morphological information are often more performant than syntactic ones).

Thus, an identical importance cannot be given to the different lists; indexes that appear more
efficient to improve the performances of IRSs must be favored. However, we do not want to
give a priori more importance to the indexes that seem the best ones. Indeed, their efficiency
may vary from one query to another, and some indexes that are found to be often less effective
can sometimes be powerful to retrieve relevant documents. Therefore we need a flexible and
adaptative fusion method. At last, one of our assumptions is that the efficiency of an index de-
pends on the type of the considered query, and more particularly on the nature of the linguistic
information it contains. It appears quite natural for instance that for a query in which a proper
name appears, an index about proper names is privileged compared to others. Conversely, for a
query including only common nouns, this index should have less impact. Thus, it is necessary
to also adapt the weights of the index results to the characteristics of the query. Many studies
in IR claims that the quality of the results is strongly dependent on the considered query. Most
of these studies aim at predicting the difficulty of queries and at estimating the reliability of the
results obtained by an IRS that processes them (Mothe and Tanguy, 2005; Macdonald et al.,
2005; Cronen-Townsend et al., 2002). As a whole, experiments have proved that there is a
strong correlation between information that characterize a query —numerical features (query
term frequency in the collection of documents for instance) or more symbolic ones (e.g. the
number of senses of an ambiguous term, the presence or absence of proper names...)— and
performances of IRSs.

In this context, we propose to conceive a flexible method for the fusion of the results that
takes into account query characteristics in order to automatically detect the best way of com-
bining result lists. To this end, we use a supervised machine learning technique, namely neural
networks, to learn to automatically evaluate the relevance of documents for a given query ac-
cording to their positions in the different result lists and to linguistic information about the
query. Finally, documents that are found to be relevant by the inferred neural network are
merged in a unique result list.

3 A supervised machine learning system to merge result lists

In this section, we first give an overview of the linguistic elements that we take into account to
describe the semantic contents of both documents and queries. Then, we describe our machine
learning approach used to combine the result lists produced by the various linguistic indexes.

3.1 Content description

Several linguistic analyses are performed on the considered collection of documents and queries
(see Section 4.1 for the description of the collection used in our experiments). These analyses
are based on common NLP techniques and tools that automatically extract from the documents
and queries 11 different types of linguistic information latter used independently to build the
different indexes. Our aim is actually not to try to obtain perfect” linguistic information but
to show that combining information extracted from large collections by standard tools, when
realized in a relevant way, offers a better semantic access to contents and improve performances
of IRSs. The linguistic pieces of information are the following ones:

e morphological information: lemma (a word without its inflections (gender, tense, number
or person); e.g. companies is transformed into company), stem (e.g. compiler,

recompiling are both transformed into compil), grammatically tagged term (de-
pending on its context, the ambiguous word form drink is tagged as a singular noun or
a verb);

e syntactic information: complex term (e.g. neural network that have a more
precise meaning than neural + network), noun phrase (e.g. information
that is retrieved that can be represented by a head-modifier relation
retrieve+information), bigrams (sequences of two following words), trigrams
(sequences of three following words);

e semantic information: semantically tagged term (a term associated with the number of
its senses in the well-known lexical thesaurus WORDNET (Fellbaum, 1998)), term + set
of synonyms (a term associated with the set of its synonyms extracted from WORDNET),
term + morphological and semantic variants (a term associated with a set of words related
by a link of derivational morphology in WORDNET), proper names.

Each type of extracted linguistic information is used to build a different index. The linguistic
elements are weighted according to the BM-25 formula. Thus, each document (or query) of the
collection is represented by 11 different descriptors: a document can be seen as a (weighted)
set of lemmas, stems, grammatically tagged terms, complex terms, noun phrases, bigrams,
trigrams, proper names, semantically tagged terms, terms associated with a set of synonyms,
terms associated with a group of morphological and semantic variants. Documents and queries
are also represented by a classical index: the set of the simple terms that they contain. Finally,
12 indexes are used to represent their textual contents. These 12 various document and query
representations are then integrated in a parallel way within an IRS. In the experiments presented
below, we have chosen to use LEMUR?, configured to emulate the well-known OKAPI IRS.
Each document representation is compared with its corresponding query representation, and
a similarity score is computed. This matching phase enables us to obtain for each index a
document list ranked by decreasing order of relevance for a given query. Finally, 12 ordered
result lists are generated; these 12 lists are the ones that will be considered for the fusion process
using the machine learning technique approach described in the following sub-section.

3.2 Principles and methods

The automatic merging of the result lists is tackled as a supervised classification problem with
2 classes. The goal is to determine if each document of the collection has to be considered as
relevant or not relevant for a given query, taking into account its ranking within the different
result lists and some information about the query. All the documents considered as relevant will
form the final list of results. In order to perform this fusion, our approach proceeds in 2 steps:
a training phase, during which a classifier is inferred, and a utilization phase which consists in
using the classifier on new queries and documents. The format of the input data common to
both the classifier in its utilization phase and the machine learning system in its training phase
(learning the classifier) except for the presence of relevance judgments, is described below; the
training and utilization steps are then presented in sub-section 3.2.2; more technical precisions
about the inference of the classifier and justifications of the choice of neural networks as a
machine learning system are given in sub-section 3.2.3.

2LEMUR is available at the following URL: http://www.lemurproject .org/

3.2.1 Input data

Input data of our system are query-document pairs (each document of the collection is evaluated
for a given query) that are characterized by several attributes. Our approach rely on these
attributes to determine, by using the machine learning system, if the document is relevant for
the given query and thus if it belongs to the final list of results. Two types of attributes can be
distinguished to characterize such a pair: the attributes used to describe documents and those
used to represent queries.

Concerning the document representation, for each query, we keep the ranks of each
document in the result lists provided by the 12 indexes. If the document does not belong to
one of the 12 lists (this is the case if, for a particular query, the document was not retrieved by
Lemur using the considered index), the value we keep as attribute is set to zero.

Concerning the query characterization, some simple features are directly extracted from the
queries. These features are those that are found to be efficient in existing studies about the
prediction of query difficulty (cf. Section 2.2). About thirty elements are chosen. First, we
take into account the influence of the length of a query by computing its size (i.e., number of
words), its number of sentences, its number of full words, etc. We also use various linguis-
tic information contained in the query: morphological information (number of simple terms,
lemmas, stems, grammatically tagged terms in the query), syntactic information (number of
verbs, bigrams, noun phrases, complex terms, trigrams in the query) and semantic information
(number of proper names, disambiguated terms, average number of meanings, number of non-
ambiguous terms in the query). Finally, we benefit from information about the query specificity
relying on the frequency of its terms: frequency of the linguistic information in the query (aver-
age frequency of the simple terms, lemmas, stems, grammatically tagged terms, bigrams, noun
phrases, complex terms, proper names in the query) and in the document collection (average
documentary frequency of the simple terms, lemmas, roots, bigrams, noun phrases, complex
terms, proper names contained in the query). Those elements are automatically extracted using
the same NLP tools and resources used to build the 12 indexes. Some of these characteristics
are not available for all the queries (they do not all contain proper names for instance); a zero
value is then associated with the missing characteristics.

All these pieces of information constitute the different attributes of a query-document pair that is
given as input to our system. Such a pair can be seen as a vector (noted query — doc) composed
of n components z1, ...7;, ..., T, that correspond to the set of attributes used for its characteri-
zation. Table 1 presents all those attributes.

During the training phase, since we are using a supervised machine learning technique, each
query-document pair is also associated with the expected class value wished as output (docu-
ment relevance or non relevance). Finally, examples used for the training step are noted as pairs
like: (query — doc, relevance decision).

3.2.2 System architecture

The global organization of the system we propose for the fusion of our result lists is relatively
straightforward. It is modelled on the common training/testing framework used for machine
learning problems. Figure 1 illustrates this process.

Ty

o)

T3

Ty

Ts

Te

X7

Ty

L9

T10
Ty
T2
x13
T14
T15
T16
Ti7
T8
T19
T20
T21
T2
T3
T4
T25
T26
Tar
Tag
T29
T30
T31
T32
T33
T34
T35
T36
T37
T38
T39
L 40
T41
Ty2
Ty3
Tyq

document rank retrieved by the simple term index
document rank retrieved by the lemma index
document rank retrieved by the stem index
document rank retrieved by the grammatically tagged term index
document rank retrieved by the noun phrase index
document rank retrieved by the bigram index
document rank retrieved by the complex term index
document rank retrieved by the trigram index
document rank retrieved by the proper name index
document rank retrieved by the semantically tagged term index
document rank retrieved by the synonym index
document rank retrieved by the semantically and morphologically related word index
number of sentences in the query

query length (number of words)

number of full words in the query

number simple terms in the query

number of lemmas in the query

number of stems in the query

number of grammatically tagged terms in the query
numebr of verbs in the query

number of bigrams in the query

number of noun phrases in the query

number of complex terms in the query

number of trigrams in the query

number of proper names in the query

number of disambiguated terms in the query

average number of senses in the query

number of non ambiguous terms in the query

simple term average frequency in the query

lemma average frequency in the query

stem average frequency in the query

grammatically tagged term average frequency in the query
bigram average frequency in the query

noun phrase average frequency in the query
complex term average frequency in the query

proper name average frequency in the query

query simple term average documentary frequency
query lemma average documentary frequency

query stem average documentary frequency

query bigram average documentary frequency

query noun phrase average documentary frequency
query complex term average documentary frequency
query proper name average documentary frequency
query trigram average documentary frequency

Table 1: Query-document vector components used as input data

information
about query

relevance
files

index result
lists

4

attributes

o o —_—>
(n°query -ln doc} {query - doc, relevance}
{n°query-n°doc S g on ;
documents | | ———— | characterization machine

TRAINING |learning system

E——
= {query - doc}

A

o, —
{ query - doc } ;Class1ﬁer

TEST

[relevance

’ Tipster collection decision
(-L;+1)

non
relevant
documents

relevant
documents

Figure 1: System architecture proposed for the fusion of the result lists

As previously mentioned, our fusion method is based on a system that is composed of
two stages. The first one is the training phase that consists in giving as input to a neural
network a set of example-couples. Each example corresponds to a vector represented by a set
of attributes, associated with a relevance decision. From these couples and their attributes,
the neural network tries to learn how to distinguish the relevant documents from non rel-
evant ones for a given query. When this training is finished, the resulting neural network
can be used as a classifier. If the learning has been correctly performed, the classifier is
able to automatically establish the relevance (or non relevance) of each document of the
collection for a given query from its positions within the different result lists and taking into
account information about the query, and thus to build a set of all the documents finally
found relevant for the query. Note that the inferred neural network does not give a score to
documents, but only indicates if they are relevant or not for a given query (i.e., binary decision).

In order to evaluate the performances of the classifier and more generally to measure the
whole system efficiency, unseen query-document pairs associated with their characterizing
attributes are given to the classifier. The classifier provides a decision on their relevance that
can be compared with a manually given relevance judgment.

The efficiency of our method strongly depends on the quality of the input data. The attributes

used to describe query-document couples must be sufficiently discriminating and relevant to
enable the system to differentiate relevant documents from non relevant ones for any query.
The assumption made here is that the rank information issued from the 12 linguistic indexes
and the query attributes are sufficiently reliable for the system to effectively perform the fusion
task. Performances of our approach are also dependent on the quality of the machine learning
system, and thus, on the neural network ability to learn and generalize the examples in order to
build an effective classifier.

3.2.3 Inferring the classifier

The machine learning technique used to perform the classification task described above is the
neural network inference. Among all the possible machine learning technique, neural networks
have been chosen for different reasons. First, neural networks have proven to be very effi-
cient on numerous classification problems, and many well-documented softwares are available.
Secondly, all the attributes are expressed as numerical information; and neural networks are
well-suited to handle such types of data. Thirdly, it is well worth noting that our fusion system
must be able to manage a high number of data. Indeed, in order to obtain the final list, the
system must predict the relevance of each collection document for each of the queries, using 44
attributes to describe each query-document couple. Thus, the classifier used to process the data
has to be relatively fast; this is the case of neural networks. Last, neural networks are quite tol-
erant with noisy data. This is an important criteria to take into account since the attributes used
to describe the examples are automatically extracted using NLP techniques with sometimes low
performances.

In practice, in the experiments presented below, the neural network implementation we use
is the open-source software FANN?. The training step of the neural network takes a few minutes
on a standard desktop PC. Once this inference step is done, classifying with the resulting neural
network all the 175,000 documents of the collection (see below) for a given query takes less
than a second.

4 Experimental results

This section is dedicated to a set of experiments that have been performed to evaluate the effi-
ciency of our fusion method applied on results obtained by the different linguistic indexes, and
consequently to estimate the interest of combining several linguistic information within an IRS
to better grasp the semantic contents of documents and queries. Sub-section 4.1 presents the
IR collection used for our experiments; Sub-section 4.2 describes our methodology to partition
data for the classifier training and test to enable evaluation. Finally, Section 4.3 details and
analyzes the results obtained by our fusion approach on the selected collection.

4.1 Data description

In order to test our merging approach, we need two sets of data: a training collection used to in-
fer a classifier, and a test collection used to evaluate the performances of the resulting classifier.
For both sets, we need queries, documents and the corresponding relevance judgments (list of
relevant documents for each query). In our experiments, these necessary data are taken out of a
subset of the TIPSTER collection used in TREC. More precisely, we kept a Wall Street Journal

SFANN library is available at the following URL: http://leenissen.dk/fann/.

subcollection made up of about 175,000 documents, and a set of 50 queries (from TREC-3)
with their relevance judgments have been retained.

The whole set of documents has been analyzed by NLP tools and the 12 linguistic indexes
have been built according to the process presented in Section 3.1. For each query, our IRS
performs 12 runs, each one using a different index. We obtain 12 result lists containing all the
documents retrieved, ranked in descending order of their relevance for a given query. To feed
up the neural network, we also need query characteristics; they are obtained on each of the 50
queries with the help of NLP tools and resources as it is described in Section 3.2.1.

4.2 Methodology for the evaluation

In order to effectively estimate the performances of our classifier, two conditions have to
be met. First, it is necessary to test the classifier on a data sample that is independent from
the training dataset. Secondly, repeating the training/test operations makes the evaluation
results more reliable. To bring these two conditions into operation, we rely on the k-fold
cross validation method. With this evaluation technique, commonly used in the machine
learning community, the original data sample is partitioned into &£ subsamples. From those &
subsamples, a single subsample is retained as an evaluation data set to test the classifier, and
the £ — 1 remaining subsamples are used together as training data. Then, the cross-validation
process is repeated k times, each of the k£ subsamples being used exactly once as the validation
data set. The k results from the folds can then be averaged to produce a single classifier
estimation.

In our case, we perform a 10-fold cross validation: the original sample data (i.e., the 50
queries with their relevance judgments) is randomly partitioned into 10 subsamples. Each of
these subsamples is composed of 5 queries that are used alternatively as test set to evaluate
the training performed from the 9 other subsamples (i.e., 45 queries). The classifier overall
performance is the average of the performances obtained on each of the 10 test subsamples.

For each test set, we evaluate if the decision of relevance provided by the classifier for each
document retrieved for a given query corresponds to the relevance indicated in the relevance
files. This process is repeated for the 5 queries of a test set. For this evaluation, the main
measure used is the F-measure (Rijsbergen, 1979) that combines recall and precision in a single
efficiency measure (here with an identical weight given to precision and recall). To compute the
F-measure value, we also calculate the recall and precision rates obtained for each query. Let us
notice that result lists that are evaluated (i.e., documents that have been classified relevant for a
given query by the classifier) are not ordered, as previously mentioned; only a relevance binary
judgment associated with the documents for each query is obtained. This constraint prevents
us from using other evaluation measures commonly used in IR, such as the non-interpolated
average precision (MAP) for example.

4.3 Results and discussion

Several experiments have been performed in order to evaluate our fusion approach and thus the
interest of combining several linguistic information in a single IRS. First, the overall perfor-
mances of our classifier is evaluated and compared with results of a traditional IRS. Secondly,
in order to understand the observed results, a thorough study of the performances obtained on

each evaluated query is proposed. Finally, a last experiment is carried out to evaluate the impact
of taking into account information about the queries in our fusion method.

4.3.1 Overall evaluation

For each query of one given test set, the inferred classifier produces a non-ordered result list.
In order to evaluate its overall performance and, consequently, to estimate the relevance of
the retrieved documents, we calculate the F-measure (harmonic mean of precision and recall)
averaged for each of the 10 test sets. The results of our merging method are compared to
those obtained on the same collection by the individual index observed as the most efficient
among our 12 indexes, i.e., the stem index. Moreover, for this comparison, we want to confront
ourselves with the most difficult case. Thus, our performances are compared to the best results
obtained by this stem index, evaluated with the DCV (document cut off value) giving the highest
F-measure value (DCV=100 in the following experiments). Table 2 summarizes the averages
of the precision, recall and F-measure values that are obtained on the 10 test sets by the 2 IRSs:
the IRS that integrates only stems and our neural network based system.

Stem index Fusion method
(DCV=100) | (improvement %)
Precision 29.70 29.48 (-0.73%)

Recall 50.80 43.88 (-13.61%)
F-measure 30.53 34.30 (+12.33%)

Table 2: Precision, recall and F-measure averages obtained by the fusion method and compared
to the performances of a stem-based IRS

Reported figures show the overall efficiency of our result list fusion method. Indeed,
good results for the F-measure are obtained since a relative improvement of 12% is observed
compared to the stem index performances. By comparing the efficiency of our approach with
performances of a IRS only based on the best index (stem index), we have proved that our
fusion method does not only rely on the results of the most efficient index but also benefits from
the other indexes and from query information to propose better results. Combining linguistic
knowledge, provided it is realized in a relevant way is thus interesting to better access to the
semantic contents.

Nonetheless, Table 2 also shows that the results obtained by our approach are overall iden-
tical in precision but lower in recall, which is surprising at first glance. The fact that the F-
measure value in our case is higher seems to indicate that our method offers more balanced
precision-recall compromises than the stem-based IRS. In order to test this assumption, the
performances of both IRSs for each considered query are detailed in next experiments.

4.3.2 Performances query by query

A query by query manual analysis of the results of the 2 IRSs enables us to notice that perfor-
mances observed by the sole stem index strongly vary from one query to another. For some
queries, the stem-based IRS yields very good results for the recall measure (close to 100%) but
generally associated with a very low precision (close to 5%) which leads to an average recall
higher than ours but a very low F-measure (about 10). More generally, the results of the stem

index appear more irregular than those provided by our method. In order to confirm this first
idea, we detail the results obtained on each test set: averages and standard deviations of the
precision, recall and F-measure values obtained on the 10 test sets are computed for the two
systems. The standard deviation gives an strong indication of the dispersion of the results for
the different queries of a test set compared to the computed average. These informations are
summarized in tables 3, 4 and 5.

Test data Stems (DCV=100) Fusion
partitioning F-measure average | F-measure average
(cross-validation) | (standard deviation) | (standard deviation)
Test set 1 45.64 (13.32) 46.55 (5.61)
Test set 2 23.33 (11.26) 24.81 (5.82)
Test set 3 30.43 (16.67) 36.72 (4.42)
Test set 4 21.68 (18.32) 32.51 (3.33)
Test set 5 28.13 (18.32) 40.49 (4.25)
Test set 6 33.34 (15.74) 34.17 (4.04)
Test set 7 29.76 (20.55) 30.25 (3.29)
Test set 8 26.79 (11.87) 27.40 (2.12)
Test set 9 40.67 (17.20) 43.98 (1.64)
Test set 10 25.54 (17.68) 26.10 (4.70)
Average on the 10 30.53 (16.09) 34.30 (3.92)
test sets

Table 3: F-measure averages and standard deviations on the 10 test sets of the stem index and
the fusion method

Test data Stems (DCV=100) Fusion
partitioning Precision average Precision average
(cross-validation) | (standard deviation) | (standard deviation)
Test set 1 49.59 (24.49) 47.47 (4.37)
Test set 2 18.11 (11.73) 18.28 (4.38)
Test set 3 23.54 (15.30) 28.37 (3.71)
Test set 4 19.95 (21.15) 25.23 (3.97)
Test set 5 43.30 (22.92) 36.52 (4.09)
Test set 6 26.59 (14.13) 25.98 (4.17)
Test set 7 23.67 (18.07) 24.16 (3.41)
Test set 8 22.07 (13.33) 19.08 (1.96)
Test set 9 37.62 (25.93) 40.16 (3.83)
Test set 10 32.31 (26.15) 29.51 (4.26)
Average on the 10 29.70 (19.32) 29.48 (3.81)
test sets

Table 4: Precision averages and standard deviations on the 10 test sets of the stem index and
the fusion method

Test data Stems (DCV=100) Fusion
partitioning Recall average Recall average
(cross-validation) | (standard deviation) | (standard deviation)
Test set 1 47.57 (13.41) 43.18 (7.16)
Test set 2 47.13 (13.65) 38.86 (9.70)
Test set 3 61.21 (11.32) 52.33 (6.89)
Test set 4 55.32 (32.49) 46.51 (2.44)
Test set 5 40.31 (18.60) 45.52 (5.11)
Test set 6 52.57 (26.11) 50.93 (7.68)
Test set 7 49.03 (29.66) 40.75 (3.36)
Test set 8 41.73 (7.85) 47.57 (3.95)
Test set 9 75.53 (25.99) 49.50 (6.07)
Test set 10 37.59 (21.10) 23.63 (5.36)
Average on the 10 50.80 (20.02) 43.88 (5.77)
test sets

Table 5: Recall averages and standard deviations on the 10 test sets of the stem index and the
fusion method

Very significant differences between the results obtained by the 2 IRS are shown by the fig-
ures in the tables, as well in terms of precision, recall or F-measure. Concerning our method, the
standard deviation observed on the 10 test sets is very low since obtained values vary between
1.64 and 5.82 for F-measure, between 1.96 and 4.38 for precision, and between 2.44 and 9.70
for recall. Consequently, obtained results on each query are very close to the average. Results
are also constant whatever the query. For the stem-based IRS, the standard deviation is much
higher. The values vary between 11.26 and 20.55 for F-measure, between 11.73 and 26.15 for
precision, and between 7.85 and 32.49 for recall. These latest figures clearly attest of a more
important dispersion of the results for the different queries around the average.

The stem index makes very significant improvements for some queries but appears less ef-
fective for others by providing unbalanced results (high recall and low precision or conversely).
The higher stability of our results proves the capacity of our method to compensate for cases
when, for a given query, the stem index fails, taking advantage of the other indexes. Therefore,
the main contribution of our method is to perform a smoothing of the results from the different
indexes and to make them consequently less sensitive to the types of the queries. Since the ob-
served results are constant on the various evaluated queries, an assumption according to which
the system has adapted its behavior to the specificities of the queries to select the indexes that
are likely to be the most effective to retrieve the relevant documents can be made. In order to
confirm this idea, the following experiments propose to evaluate the influence of taking into
account information about the query on the efficiency of our fusion method.

4.3.3 Impact of query characterization

In order to validate the assumption that our fusion method bases its behavior on characteristics
of the queries to select the best indexes, we conduct a simple additional experiment. We
repeat the previous experiments, removing from our system all the attributes that correspond to
information about the queries (i.e., attributes x13 to x44). In other words, our neural network
only learns from information about document ranks. Comparing results of the two experiments

(i.e., performances with and without taking into account information about queries) allows us
to have a precise idea of the benefit one can expect of our method.

Table 6 presents the precision, recall and F-measure average values obtained on the 10
test sets by the IRS that integrates stems and by the fusion system without information about
queries. The reported figures clearly show that our classifier performs not so good when it
cannot use query features. Indeed, the F-measure improvement is low, and both precision and
recall are lower than the ones obtained by the stem-based IRS. Nonetheless, as for the previous
results, the fact that the F-measure of the fusion method is higher than that of the stem IRS
while precision and recall are lower seems to indicate that our system still provide more stable
compromises.

Stem Fusion

index | (without query info.)
(improvement %)
Precision | 27.90 26.49 (-5.04%)
Recall 51.32 41.65 (-18.84%)
F-measure | 29.67 30.28 (+2.05%)

Table 6: Precision, recall and F-measure averages obtained by the fusion method without query
information and compared to the performances of the stem-based IRS

Once again, we detail the results query by query to observe the variations. Tables 7, 8 and
9 present respectively F-measure, precision and recall values for each of the 10 test sets. First,
these results show again that results obtained by our method without any information about
the queries are clearly not as good as the previous ones. These observations highlight the idea
that our fusion approach benefits a lot from the query features to identify the indexes likely
to be most effective to find the relevant documents. Thus, our approach is more complex than
traditional ones that are only based on result lists, but is also more flexible since it is able to adapt
differently its behavior to each type of query. These figures also prove that exploiting jointly
linguistic information from the morphological, syntactic and semantic levels of language in IR
is of great interest since results are more stable than those observed in the NLP-IR coupling
experiments that take into account only one linguistic information and whose performances are
known to be very irregular. Yet, these latest experiments also prove that our fusion system needs
information about queries in order to improve the overall performances (in terms of F-measure).

5 Conclusion and future work

In order to make the best possible use of rich linguistic representations of documents and
queries in IRSs, representations better suited to a semantic access to contents, an automatic
technique is required, able to take those representations into account and combine their
elements in the most adapted way. This paper described our solution to that issue. We propose
an original method for data fusion, based on a supervised machine learning technique, namely
neural networks, that is able to determine the relevance of a document for a given query by
considering the positions obtained by this document for this query in different result lists cor-
responding to several linguistic indexes of various levels of language (morphological, syntactic

Test data
partitioning
(cross validation)

Stems

Fusion (without
query info.)

F-measure average
(standard deviation)

F-measure average
(standard deviation)

Test set 1 17.15 (15.60) 19.89 (4.09)
Test set 2 45.23 (17.06) 46.67 (4.50)
Test set 3 23.65 (14.42) 24.58 (3.16)
Test set 4 38.42 (11.71) 37.18 (4.89)
Test set 5 26.55 (16.04) 24.37 (1.74)
Test set 6 30.32 (12.66) 22.65 (3.07)
Test set 7 21.58 (13.88) 24.14 (4.73)
Test set 8 31.21 (20.90) 42.62 (8.57)
Test set 9 27.52 (13.46) 28.32 (1.90)
Test set 10 35.07 (19.92) 32.38 (3.03)
Average on the 10 29.67 (15.57) 30.28 (3.97)

test sets

Table 7: F-measure averages and standard deviations on the 10 test sets of the stem index and
the fusion method without query information

Test data
partitioning
(cross-validation)

Stems

Fusion (without
query info.)

Precision average
(standard deviation)

Precision average
(standard deviation)

Test set 1 13.73 (16.99) 12.53 (3.02)
Test set 2 45.91 (20.07) 41.07 (6.02)
Test set 3 18.41 (9.79) 17.78 (3.29)
Test set 4 36.70 (22.10) 33.50 (4.73)
Test set 5 35.05 (26.06) 35.18 (4.69)
Test set 6 22.34 (11.24) 15.62 (2.22)
Test set 7 16.53 (13.85) 15.99 (3.68)
Test set 8 33.98 (30.41) 39.69 (7.14)
Test set 9 21.90 (11.64) 21.74 (1.75)
Test set 10 34.48 (25.90) 31.84 (3.49)
Average on the 10 27.90 (18.81) 26.49 (4)

test sets

Table 8: Precision averages and standard deviations on the 10 test sets of the stem index and
the fusion method without query information

and semantic) and linguistic information about the query. From a computing point of view, it is
well worth noting that this architecture is also well suited to process an arbitrary large amount
of data since the indexing and inference parts are done off-line, and using the neural network
to determine the relevance of a document for a given query is very fast and can be done on-line.

When compared to the same IRS not integrating our fusion method but using only the most

Test data
partitioning
(cross-validation)

Stems

Fusion (without
query info.)

Recall average
(standard deviation)

Recall average
(standard deviation)

Test set 1 60.83 (24.23) 49.30 (5.84)
Test set 2 50.78 (11.51) 54.41 (2.52)
Test set 3 40.11 (25.12) 40.53 (3.24)
Test set 4 57.38 (24.45) 42.12 (6.84)
Test set 5 30.13 (15.46) 18.73 (1.09)
Test set 6 62.45 (21.99) 41.70 (6.64)
Test set 7 55.19 (14.44) 49.94 (5.73)
Test set 8 46.87 (26.31) 46.10 (10.53)
Test set 9 47.79 (22.77) 40.68 (1.84)
Test set 10 61.69 (27.03) 32.98 (2.88)
Average on the 51.32 (21.33) 41.65 (4.72)

10 test sets

Table 9: Recall averages and standard deviations on the 10 test sets of the stem index and the
fusion method without query information

efficient single morphological (stem) representation of documents and queries, results obtained
proved the interest of our approach, not in terms of precision and recall as it could be expected,
but in a better trade-off between these two measures for each query. They have moreover
demonstrated the capacity of our machine learning based approach to adapt its behavior
differently to each type of queries. The result stability also shows that the joint exploitation
of multilevel linguistic information enables to compensate for the weaknesses of the linguistic
information when individually exploited (i.e., variations of results according to data and more
particularly according to considered queries).

This paper opens many future prospects that need further consideration. First, the fact that
our classifier provides only one binary decision on the document relevance currently constitutes
one of the main drawbacks of our fusion method since we cannot fully compare our perfor-
mances with those obtained by some other IRSs. Improvements of the classifier that consist in
giving a score to the documents according to their relevances for a given query is being studied.
Secondly, in order to overcome the neural network limitations (its “black box™ aspect), other
machine learning methods (e.g. symbolic methods) could be investigated in order to obtain the
same results while offering elements for their interpretation. Currently, we cannot know among
the various exploited linguistic information which ones or which combinations of them are the
most effective to find the relevant documents for a given query. Last, from a more applicative
point of view, using this machine learning approach in a relevance feedback framework is being
foreseen. The main idea is to train a neural network, with the same 12 linguistic representations,
by interacting with a user during a search. For a given query, the user’s judgment on a first list
of results is used to train a new classifier that can then be considered to generate a more relevant
second list of results; the process can be repeated. Thus, in contrast with the approach presented
in this paper, a particular classifier would be especially inferred for a given query and thus may
yield good results for it, even if it may not be well-suited to process any other query. More
generally, in a mutimedia framework, using this kind of machine learning approach can also be

foreseen as a simple way to integrate each media retrieval results in a unique relevance list.

References

Aslam, J. and Montague, M. (2001). Models for Metasearch. In Proceedings of the 24th ACM
International Conference on Research and Development in Information Retrieval (SIGIR),
New-Orleans, USA.

Bartell, B. T., Cottrell, G. W., and Belew, R. K. (1994). Automatic Combination of Multiple
Ranked Retrieval Systems. In Proceedings of the 17th ACM International Conference on
Research and Development in Information Retrieval (SIGIR), Dublin, Ireland.

Croft, W. B. (1997). Combining Approaches to Information Retrieval. In Croft, W. B., editor,
Advances in Information Retrieval: Recent Research from the Center for Intelligent Informa-
tion Retrieval, pages 1-36. Kluwer Academic Publishers.

Cronen-Townsend, S., Zhou, Y., and Croft, W. B. (2002). Predicting Query Performance. In
Proceedings of the 25th ACM International Conference on Research and Development in
Information Retrieval (SIGIR), Tampere, Finland.

Fagan, J. L. (1987). Experiments in Automatic Phrase Indexing for Document Retrieval: A
Comparison of Syntactic and Non-Syntactic Methods. PhD thesis, Cornell University, New-
York, United-States of America.

Fellbaum, C., editor (1998). WORDNET: An Electronic Lexical Database. C. Fellbaum, The
MIT Press, Cambridge, Massachussets, United-States of America.

Fox, E. A. and Shaw, J. A. (1994). Combination of Multiple Searches. In Proceedings of the 2nd
International Conference on Text Retrieval (TREC), Gaithersburg, United-States of America.

Fuller, M. and Zobel, J. (1998). Conflation-Based Comparison of Stemming Algorithms. In
Proceedings of the 3rd Australian Document Computing Symposium, Sydney, Australia.

Gauch, S., Wang, J., and Rachakonda, S. M. (1999). A Corpus Analysis Approach for Au-
tomatic Query Expansion and its Extension to Multiple Databases. ACM Transactions on
Information Systems, 17(3):250-269.

Kilgarriff, A. and Palmer, M. (2000). Special Issue on Senseval. Computers and the Humanities,
34(1/2).

Lee, J. H. (1997). Analyses of Multiple Evidence Combination. In Proceedings of the 20th ACM
International Conference on Research and Development in Information Retrieval (SIGIR),
Philadelphia, United-States of America.

Macdonald, C., He, B., and Ounis, 1. (2005). Predicting Query Performance in Intranet Search.
In Proceedings of Predicting Query Difficulty - Methods and Applications Workshop, ACM
International Conference on Research and Development in Information Retrieval (SIGIR),
Salvador de Bahia, Brazil.

Moreau, F. (2006). Revisiter le couplage traitement automatique des langues et recherche
d’information. PhD thesis, University of Rennes 1, Rennes, France.

Mothe, J. and Tanguy, L. (2005). Linguistic Features to Predict Query Difficulty - A Case Study
on Previous TREC Campaigns. In Proceedings of Predicting Query Difficulty - Methods and

Applications Workshop, ACM International Conference on Research and Development in
Information Retrieval (SIGIR), Salvador de Bahia, Brazil.

Perez Carballo, J. and Strzalkowski, T. (2000). Natural Language Information Retrieval:
Progress Report. Information Processing and Management, 36.

Rijsbergen, C. J. v. (1979). Information Retrieval. Butterworths.

Sanderson, M. (1997). Word Sense Disambiguation and Information Retrieval. PhD thesis,
Glasgow University, Scotland.

Strzalkowski, T., Guthrie, L., Karlgren, J., Leistensnider, J., Lin, F., Carballo, J. P., Straszheim,
T., Wang, J., and Wilding, J. (1996). Natural Language Information Retrieval: TREC-5 Re-
port. In Proceedings of the 5th International Conference on Text Retrieval (TREC), Gaithers-
burg, United-States of America.

Vogt, C. C. and Cottrell, G. W. (1999). Fusion via a Linear Combination of Scores. Information
Retrieval, 1(3):151-173.

Voorhees, E. (1998). Using WORDNET for Text Retrieval. In Fellbaum, C., editor, WORD-
NET: An Electronic Lexical Database. The MIT Press.

