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Etude de la dimensionnalité  
d’un test de raisonnement à l’aide  
des Modèles de Réponse à l’Item 
 

Jacques Juhel (*)             

 

Summary : Several Item Response Theory (IRT) based methods can be 

used for studying the dimensionality of dichotomous data. One 

such typically selected approach is the verification of the unidi-

mensionality of a set of items with unidimensional IRT. The 

identification of data’s multidimensional structure with nonlin-

ear factorial analysis or multidimensional IRT is another 

promising research strategy. Some of these models are first 

briefly presented. Their potential in studying the dimensionality 

of a set of dichotomous data collected with items of a reasoning 

test is then illustrated. Results of data analysis give evidence in 

support of multidimensional IRT in assessing dimensionality 

of test data and in the measurement of individual differences.  

Key words : Dimensionality, nonlinear factorial analysis, multidimensional 

item response theory (MIRT), confirmatory research strategy 

Résumé : Plusieurs méthodes basées sur les Modèles de Réponse à l’Item 

(MRI) peuvent être employées pour étudier la dimensionnalité 

de données dichotomiques. La stratégie peut consister soit à vé-

rifier l’unidimensionnalité de données, soit à identifier la struc-

ture multidimensionnelle des données grâce à des modèles 

comme l’analyse factorielle non linéaire ou les MRI multidi-

mensionnels. Après avoir brièvement présenté certains de ces 

modèles, on tente ensuite d’en illustrer le potentiel en les appli-

quant à des données recueillies à l’aide d’un test de raisonne-

ment comportant trois échelles d’items dichotomiques. Les ré-

__________ 
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sultats des analyses effectuées témoignent des possibilités de mo-

délisation offertes et illustrent l’intérêt des MRI dans l’étude de 

tests multidimensionnels et dans la mesure des caractéristiques 

individuelles. 

Mots Clés : Dimensionnalité, analyse factorielle non linéaire, modèles mul-

tidimensionnels de réponse à l’item, stratégie de recherche 

confirmatoire 

 

INTRODUCTION  

 Les Modèles de Réponse à l’Item (MRI) dont l’objectif général est de 
rendre compte des réponses d’individus à un ensemble donné d’items traitent 
fondamentalement de la relation entre la probabilité  
d’observer une réponse correcte de l’individu i à l’item j et certaines caractéris-
tiques de l’individu et de l’item (Rasch, 1960/80). Ces modèles mathémati-
ques, élaborés originellement pour des données dichotomiques sous-tendues 
par une seule dimension, représentent le plus souvent la fonction de réponse à 
l’item sous la forme d’une régression non linéaire de l’item sur le trait latent 
mesuré

),,, | 1( ijjjij cbaXP θ=

1 (Hambleton, 1989 ; Hambleton et Swaminathan, 1985 ; Lord, 1980 ; 
Lord et Novick, 1968 ; van der Linden et Hambleton, 1997 ; Wright et Stone, 
1979). La fonction de réponse à l’item d’un MRI paramétrique appliqué à des 
données dichotomiques est ainsi classiquement définie comme la probabilité 
d’observer une réponse correcte de l’individu i à l’item j en fonction de plu-
sieurs paramètres de l’item j (la puissance discriminative aj, la difficulté 
bj, l’asymptote basse ou le paramètre de pseudo-chance cj) et de l’individu i (le 
niveau d’aptitude θi). Cette fonction est plus ou moins complexe selon le type 
de relation spécifiée2 et le nombre de paramètres considérés (voir pour une 
présentation en français Dickes, Flieller, Tournois et Kop, 1994).  

Comme pour tous les modèles qui spécifient une relation entre des ob-
servations et une ou plusieurs constructions psychologiques, l’application des MRI 
à un ensemble de données nécessite que certains postulats soient respectés. Ces 
exigences sont bien sûr moins grandes dans le cas de modèles non paramétriques. 
Tous les MRI reposent ainsi sur l’hypothèse de monotonie, hypothèse selon la-

__________ 
1 Quelques MRI dits non paramétriques n’attribuent cependant aucune forme particulière à la fonction 
de réponse à l’item (Sijtsma, 1998). 
2 La fonction de répartition généralement choisie a une densité de probabilité normale (fonction ogive 
normale) ou logistique (fonction logistique). 
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quelle la probabilité de réussite à l’item croît avec le niveau d’aptitude. Beaucoup 
de ces modèles font également l’hypothèse d’unidimensionnalité des données. 
L’hypothèse d’une seule aptitude est ainsi jugée suffisante pour rendre compte des 
réponses observées à l’ensemble d’items considéré. Enfin, l’hypothèse 
d’indépendance locale explique les relations entre items par leur seule dépendance 
au trait latent, l’aptitude de l’individu et les caractéristiques de l’item étant alors 
considérées comme les seuls facteurs de la performance. 

Bien que liées, les hypothèses d’indépendance locale et d’unidimen-
sionnalité ne sont pas assimilables l’une à l’autre et la première est utilisable aussi 
bien dans les MRI unidimensionnels que dans ceux qui ne font pas l’hypothèse 
d’unidimensionnalité (MRI multidimensionnels). La dimensionnalité k d’un en-
semble d’items est en effet définie dans les MRI comme le nombre total de traits 
latents nécessaires et suffisants à l’explication des relations entre items3. Ces k 
traits latents constituent un espace k-dimensionnel au sein duquel il est possible de 
situer l’individu au moyen du vecteur de scores . L’indépendance 
locale est généralement considérée dans les MRI unidimensionnels comme un cas 
spécial d’unidimensionnalité de l’espace latent (Hambleton et Swaminathan, 1985 ; 
Lord et Novick, 1968). Mais les items d’un MRI explicitement unidimensionnel 
peuvent ne pas être localement indépendants. C’est par exemple le cas lorsque la 
probabilité de bonne réponse à un item donné dépend du patron des réponses 
fournies aux items antérieurement présentés

),...,,( 21 kθθθ

__________ 

4 ou lorsqu’elle dépend de dimensions 
mineures, spécifiques à un nombre réduit d’items. Un MRI localement indépen-
dant peut aussi être multidimensionnel au sens où plusieurs composantes du trait 
latent (e.g., des processus dans un modèle composantiel unidimensionnel) ou 
plusieurs traits latents, éventuellement interdépendants, peuvent influencer les 
réponses observées. L’hypothèse d’unidimensionnalité est donc fonction du ni-
veau d’approximation choisi. 

 Stout (1987), en suggérant de distinguer une forme “ essentielle ” 
d’indépendance, a proposé une définition moins stricte de l’indépendance locale 

3 Dans le cas de données dichotomiques, la dimensionnalité peut être techniquement définie de la 
manière suivante (Nandakumar, 1991). Soient Xij la réponse (1 pour réussite, 0 pour échec) de l’individu 
i à l’item j et Xn le vecteur de réponses à un ensemble donné de n items. Si k traits latents interviennent 
dans un MRI localement indépendant et s’il est impossible de produire un tel modèle localement  
indépendant pour Xn avec moins de k traits latents, la dimensionnalité de Xn est k. Le MRI est dit 
unidimensionnel si k=1, multidimensionnel si k>1.Cette définition de la dimensionnalité impose donc 
que toutes les covariances entre items soient nulles lorsque les k traits latents sont maintenus constants 
(covariances conditionnelles aux k traits latents). 
4 Voir à ce sujet les travaux sur les MRI dynamiques (e.g., Verhelst et Glas, 1993) ou ceux sur les modè-
les à dépendance locale (e.g., Hoskens et De Boeck, 1997). 
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qui s’inscrit dans le contexte des MRI non paramétriques (Mokken et Lewis, 
1982). Pour Stout, un ensemble de données est essentiellement dépendant par 
rapport à kE traits latents si pour un ensemble donné de réponses à n items, la 
valeur moyenne des valeurs absolues des covariances conditionnelles aux kE traits 
latents entre tous les items tend vers 0 quand n tend vers l’infini. Contrairement 
donc à la définition de la dimensionnalité dans les MRI paramétriques, cette défi-
nition plus libérale met l’accent sur la seule influence des traits “ dominants ” en 
considérant que l’hypothèse d’unidimensionnalité essentielle (kE = 1) est respectée 
si une dimension dominante, bien distincte de dimensions mineures, peut être 
identifiée dans les données (Nandakumar, 1991, 1993).  

 La dimensionnalité d’un test ou d’un ensemble d’items est souvent difficile à 
juger. Il est bien sûr toujours possible en théorie de sélectionner des items afin de 
mesurer une seule dimension. Mais le tableau est rarement aussi simple en prati-
que car la dimensionnalité d’un modèle ou d’un ensemble de données repose 
fondamentalement sur l’influence conjointe des items et des individus qui y ré-
pondent. Certains facteurs individuels comme les choix procéduraux, la gestion 
des échanges entre vitesse et précision, le niveau d’anxiété et de motivation, etc. 
peuvent influencer les réponses aux items. Une certaine hétérogénéité peut aussi 
se retrouver au niveau du contenu et de la nature des items, certains items étant 
par exemple plus sensibles que d’autres aux différences individuelles dans le ni-
veau d’aptitude. Les items et les individus produisent donc ensemble des données 
dont la dimensionnalité doit être systématiquement interrogée (e.g., Hambleton et 
Rovinelli, 1986 ; Hambleton, Swaminathan et Rogers, 1991 ; voir aussi les articles 
de McDonald, Reckase et Gessaroli dans l’ouvrage dirigé par Laveault, Zumbo, 
Gessaroli et Boss, 1994). Cette interrogation peut s’appuyer sur diverses méthodes.  

METHODES D’EVALUATION DE LA DIMENSIONNALITE  

DE DONNEES DICHOTOMIQUES 

 L’unidimensionnalité d’un test ou de chacun des sous-tests qui le composent 
peut être vérifiée à l’aide des MRI unidimensionnels. L’emploi de ceux-ci doit 
néanmoins être approximativement justifié en appliquant préalablement par 
exemple une procédure non paramétrique d’évaluation de la dimensionnalité des 
items considérés. Une seconde étape doit succéder à la précédente si les analyses 
effectuées conduisent à réfuter l’hypothèse d’unidimensionnalité. L’identification 
de la structure multidimensionnelle du test impose alors de faire appel à d’autres 
méthodes comme l’analyse factorielle linéaire des corrélations inter-items ou 
mieux, l’analyse factorielle non linéaire et les MRI multidimensionnels. 
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L’utilisation conjointe de ces méthodes, associées ou non à certaines procédures 
complémentaires (e.g., analyse en clusters, échelonnement multidimensionnel, 
etc.), peut aussi apporter des informations utiles à la compréhension de la dimen-
sionnalité des données. 

Les procédures non paramétriques 

 L’utilisation d’approches non paramétriques ne faisant l’hypothèse d’aucune 
fonction paramétrique de réponse à l’item et dans lesquelles la dimensionnalité est 
définie de manière moins contraignante que dans les MRI paramétriques peut être 
une étape utile dans la détermination de la dimensionnalité d’un ensemble d’items. 
Ces diverses procédures sont basées sur un principe d’estimation de covariances 
inter-items conditionnelles au niveau d’aptitude de l’individu. Elles peuvent être 
employées pour évaluer le manque d’unidimensionnalité d’un ensemble d’items 
dichotomiques, identifier des sous-groupes d’items essentiellement unidimension-
nels ou estimer la “ quantité ” de multidimensionnalité présente dans les données 
(pour revue, Stout, Douglas, Kim, Roussos et Zhang, 1996). 

 La procédure DIMTEST (Nandakumar et Stout, 1993 ; Stout, 1987) dont 
nous présenterons une application plus loin en est un exemple. Elle consiste à 
partager l’ensemble des items considérés en plusieurs sous-tests. Les items du 
premier sous-test (AT1) sont choisis (par l’utilisateur ou automatiquement après 
analyse en facteurs communs des corrélations tétrachoriques ou classification 
hiérarchique) comme mesurant le même trait dominant. Les items du second 
sous-test (AT2), en nombre égal à ceux de AT1, sont ensuite sélectionnés de telle 
manière que leur difficulté soit distribuée de la même façon que celle des items de 
AT1. Les items restants constituent le sous-test de partitionnement (PT). Ils ser-
vent à répartir les sujets dans différents sous-groupes en fonction de leur score au 
test. Une première statistique (T1) est calculée pour les items de AT1. Celle-ci peut 
être comprise comme la moyenne sur l’ensemble des sous-groupes de sujets de la 
différence calculée au sein de chaque sous-groupe, entre deux estimations de la 
variance. La première variance est celle des scores observés. La seconde est une 
estimation de la variance des scores sous hypothèse d’unidimensionnalité. Elle est 
égale à la première variance si l’hypothèse d’unidimensionnalité est respectée et lui 
est inférieure dans le cas contraire. Une procédure semblable permet d’obtenir une 
seconde statistique (T2) pour les items de AT2. L’hypothèse d’unidimensionnalité 
peut alors être testée à partir de la statistique T , de distribution asymp-
totiquement normale, de moyenne nulle et de variance 1. L’idée est que si le mo-
dèle sous-tendant les réponses aux items est essentiellement unidimensionnel, 
l’écart entre T

21 T−T=

1 et T2 doit être proche de 0. Si par contre, le modèle qui sous-tend 
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les réponses au test n’est pas essentiellement unidimensionnel, les items de AT1 
sont dimensionnellement différents de ceux de AT2 et de PT, la valeur du T de 
Stout est importante et la probabilité de rejet de l’hypothèse nulle, forte. Signalons 
par ailleurs que cette procédure semble être peu sensible à l’existence de corrél-
ations entre traits latents et à la méthode d’affectation des items dans les différents 
sous-tests (Hattie, Krakowski, Rogers et Swaminathan, 1996). 

Les MRI unidimensionnels  

 Un MRI unidimensionnel n’est généralement appliqué à des données que si 
l’on a quelque raison de penser qu’une seule dimension en sous-tend 
l’organisation. Qu’il s’agisse du modèle de Rasch ou des modèles logistiques à 2 ou 
à 3 paramètres, l’hypothèse d’unidimensionnalité est considérée comme satisfaite 
si le modèle s’ajuste aux données c’est-à-dire si l’écart entre les valeurs observées 
et les valeurs prédites par le modèle pour les items et les individus est faible. 
L’évaluation de l’unidimensionnalité, synonyme ici d’évaluation de l’adéquation du 
modèle, repose donc sur l’estimation préalable des paramètres du MRI unidimen-
sionnel choisi.  Ces paramètres peuvent être ensuite comparés entre différents 
sous-groupes de sujets ou d’items selon que l’on étudie l’invariance des paramètres 
de l’item ou de l’individu. L’égalité des paramètres estimés est testée au moyen de 
statistiques obtenues en comparant les distributions des scores observés et des 
scores prédits sous hypothèse d’ajustement du MRI. De nombreuses mesures 
d’ajustement globales (modèle) ou analytiques (items, individus), souvent basées 
sur le chi-deux ou le t, ont été proposées (pour revue Flieller, 1993 ; Hattie, 1985). 
Ces indices d’ajustement semblent néanmoins rarement satisfaisants en eux-
mêmes (distribution d’échantillonnage souvent mal connue, sensibilité à la taille de 
l’échantillon, critère de décision rarement fondé). 

 Il est donc souhaitable de ne pas évaluer l’ajustement d’un MRI unidimen-
sionnel, et donc l’hypothèse d’unidimensionnalité, à l’aide de ces seuls indices. 
Hambleton, Swaminathan et Rogers (1991) proposent par exemple de compléter 
l’information fournie par les indices d’ajustement en combinant plusieurs appro-
ches comme l’analyse factorielle d’items, l’analyse des covariances entre items au 
sein de groupes de niveau d’aptitude homogène, l’étude de l’homogénéité des 
corrélations point-bisériales ou l’examen comparatif des résidus pour les MRI 
unidimensionnels à 1, 2 et 3 paramètres. 

L’analyse factorielle linéaire des corrélations entre items 

 L’identification des facteurs susceptibles de sous-tendre l’organisation de 
données dichotomiques au moyen de l’analyse factorielle linéaire n’est pas sans 
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poser de sérieuses difficultés. Lord et Novick (1968) signalent ainsi qu’il est 
contradictoire de définir une variable aléatoire discrète comme une combinaison 
linéaire de variables latentes continues. On sait en outre que l’analyse factorielle 
linéaire de coefficients phi conduit fréquemment à une surestimation de la dimen-
sionnalité en raison de l’émergence de dimensions artefactuelles5 (e.g., la 
“ difficulté ” des items du test) s’expliquant par la non linéarité des fonctions de 
régression des items sur le trait latent (Bernstein et Teng, 1989 ; Hulin et al. 1983, 
cités dans Nandakumar et Stout, 1993). 

 Une approche parfois recommandée consiste à évaluer approximativement 
la dimensionnalité des données à partir de l’analyse des corrélations tétrachori-
ques6 entre items (Reckase, 1979 ; Lord, 1980). Si la première valeur propre est 
élevée par rapport à la seconde et que celle-ci n’est pas plus importante que les 
valeurs propres de rang supérieur, il est alors possible de conclure à 
l’unidimensionnalité des données. Une façon plus fine de procéder repose sur la 
comparaison de ces valeurs propres à celles d’une matrice de corrélations de don-
nées aléatoires obtenues avec un nombre identique de variables sur un échantillon 
de même taille (Hambleton, Swaminathan et Rogers, 1991). L’hypothèse 
d’unidimensionnalité peut être retenue lorsque, à l’exception de la première 
d’entre-elles, les valeurs propres sont les mêmes. Il semble cependant que les 
corrélations tétrachoriques entre items peuvent être biaisées quand il est possible 
de répondre correctement au hasard (Carroll, 1945), quand la distribution du trait 
latent n’est pas normale ou quand la fonction de réponse à l’item n’est pas la 
fonction ogive normale (Lord, 1980). 

Les approches multidimensionnelles 

 La modélisation de données dichotomiques à l’aide de MRI unidimension-
nels localement indépendants n’est bien sûr pas toujours possible. On peut alors, 
lorsque l’exigence d’unidimensionnalité s’avère - trop - incompatible avec 
l’organisation des données, faire appel à des approches paramétriques multidimen-
sionnelles pour déterminer la dimensionnalité de matrices de données binaires. 
Deux catégories de méthodes dont les formulations statistiques sont virtuellement 
identiques peuvent être utilisées à cette fin (Reckase, 1997b). Les méthodes 

__________ 
5 Un facteur est dit artefactuel (spurious) quand il provient des propriétés de mesure des variables obser-
vées et de la distribution des réponses à l’item sur les différentes catégories de réponse plutôt que de la 
structure latente des données. 
6 La corrélation tétrachorique entre deux items j1 et j2 est une estimation, calculée par exemple par la 
méthode du maximum de vraisemblance, de la corrélation entre les variables latentes continues Xj1 et 
Xj2 qui sous-tendent j1 et j2. 
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d’analyse factorielle non linéaires sont généralement employées pour identifier les 
dimensions qui résument le mieux les relations entre items dichotomiques. Elles 
peuvent être utilisées aussi bien dans une logique exploratoire que pour évaluer 
l’adéquation aux données de représentations factorielles élaborées a priori (logique 
confirmatoire, Dickes, 1996). Les MRI multidimensionnels présentent l’avantage 
par rapport à l’analyse factorielle d’items de plus se préoccuper de la description 
des caractéristiques des items et de leur interaction avec les traits latents mesurés. 

Les méthodes d’analyse factorielle non linéaire 
 Contrairement au modèle d’analyse factorielle classique pour variables 
continues qui fait l’hypothèse d’un processus de réponse directement observable, 
les modèles d’analyse factorielle non linéaire pour variables dichotomiques font 
l’hypothèse d’un processus de réponse non observable , pour l’individu i et 
l’item j, défini comme une combinaison linéaire de m variables latentes θ  de 
distribution normale, pondérées par les saturations  soit : 

ijy

ki

jkλ

imijmijijijy δ+θλ++θλ+θλ= ...2211  

 Ces modèles postulent l’existence d’une variable continue non observable 
, dichotomisée en un score observé 1 ou 0 selon que le niveau de compétence 

du sujet est inférieur ou supérieur à un certain seuil  pour l’item j soit : 
ijy

jγ







γ<
γ≥

=
jij

jij
ij y

y
x

 si 0
 si 1

 

 Deux modèles d’analyse factorielle non linéaire principaux ont été 
développés. On peut les différencier selon que l’exigence d’indépendance locale 
est faible ou forte7 (weak vs strong local independence) c’est-à-dire selon la nature de 
l’information analysée (limited vs full information).  

 Le premier de ces modèles a été proposé par McDonald (1967, 1982, 1997). 
C’est un modèle à ogive normale N(.) accompagné d’un principe d’indépendance 
locale faible, l’information analysée étant celle de la matrice de moment-produit8 
de l’échantillon. Le modèle définit la probabilité de bonne réponse à l’item j par 
l’individu i par l’équation :  

__________ 

ée.  

7 L’exigence d’indépendance locale est forte (resp. faible) si les k composantes de θ rendent théorique-
ment compte de toutes les relations entre les probabilités de bonne réponse (resp. de toutes les covariances 
entre items). Dans ce second cas, les covariances résiduelles entre toutes les paires d’items à des niveaux 
d’aptitude fixés sont toutes nulles lorsque l’espace latent est unidimensionnel. 
8 La matrice de moment-produit est obtenue en multipliant la matrice de données binaires par sa 
transpos
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( ) ( )kijkijjiij NxP θβ++θβ+β=θ= ...1 110  

avec β  élément de la matrice de structure et k facteurs standardisés 
. Ce modèle, qui peut être représenté sous forme d’une régression polynomiale 

infinie des données sur les facteurs

jk  ][ jkB β=

jkβ

kiθ
9, peut être approximé par la méthode des 

moindres carrés. McDonald a montré qu’il est possible de déduire les paramètres 
de seuil10  (interprétables en termes de difficulté) et les saturations  des 
items à partir des estimations des paramètres  et des covariances entre fac-
teurs. Ces paramètres peuvent être estimés avec le programme 
NOHARM (Normal Ogive Harmonic Analysis Robust Method) développé par Fraser et 
McDonald (1988) dont la méthode d’estimation est celle des moindres carrés non 
pondérés (ULS : Unweighted Least Squares). C’est une méthode robuste, peu sensible 
au non respect de l’hypothèse de normalité du vecteur-trait latent mais qui ne 
fournit ni estimation des erreurs-type de mesure, ni test statistique permettant de 
juger de l’ajustement du modèle. La détermination de la dimensionnalité des don-
nées repose alors sur l’examen comparatif des covariances résiduelles entre items 
pour chacune des solutions factorielles testées. Cet examen peut être facilité par 
l’utilisation d’une statistique du chi-deux qui permet de tester l’hypothèse H

jγ jkλ

0 que 
les éléments de la matrice résiduelle sous-diagonale sont nuls (De Champlain et 
Linda Tang, 1997). 

 Une seconde méthode d’analyse factorielle plus directement basée sur les 
MRI a été développée par Bock et ses collaborateurs (Bock et Aitkin, 1981 ; Bock, 
Gibbons et Muraki, 1988 ). Cette extension du modèle à ogive normale à 2 para-
mètres, connue sous le nom de Full Information item Factor Analysis, peut être vue 
comme un cas plus général de l’analyse factorielle (Dickes, ce numéro ; Reckase, 
1997b) dans la mesure où on cherche à reproduire toute l’information de la ma-
trice de données binaires (exigence d’indépendance locale forte). La probabilité de 
bonne réponse du sujet i à l’item j y est définie par l’équation: 

( ) ( )kijiijxP θΦ=θ= 1 , 

(.)jΦ  étant une fonction ogive normale des paramètres de discrimination ajk (ou 
pente) et de difficulté bj (ou ordonnée à l’origine) de l’item j à partir desquels peu-
vent être calculés les saturations et les seuils γjkλ j. Un troisième paramètre cj 

__________ 
9 La fonction ogive normale dont la courbe représentative est très peu différente de celle de la fonction 
logistique permet le développement de séries harmoniques du type : 

...) | 1( 2
210 +θ+θ+=θ= ijijjiij fffxP  où fjk est la saturation du facteur f sur l’item j. 

10 Ces paramètres de seuil sont les écarts normaux spécifiant l’aire sous la courbe normale égale au 
pourcentage de réponses incorrectes aux items. 
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(asymptote basse) peut également être ajouté au modèle. Un programme 
(TESTFACT - Bock, Gibbons et Muraki, 1988; Wilson, Wood et Gibbons, 1991) 
permet l’estimation des paramètres de l’item par la méthode du maximum de 
vraisemblance marginal (MML : marginal maximum likelihood). La dimensionnalité 
des données peut être explorée en testant successivement des modèles de dimen-
sionnalité croissante et en évaluant la contribution de chaque facteur supplémen-
taire par le gain d’ajustement apporté et mesuré par un χ2 partiel du rapport de 
vraisemblance. L’analyse se poursuit jusqu’à ce que l’introduction d’un facteur 
supplémentaire ne produise plus d’amélioration significative de l’ajustement du 
modèle. 

Les MRI multidimensionnels 
Les MRI multidimensionnels pour items dichotomiques sont des exten-

sions des MRI unidimensionnels à 1, 2 et 3 paramètres. Comme ces derniers, ils 
visent à fournir une description adéquate de l’interaction individu-item (Lord, 
1980) et une estimation multidimensionnelle des caractéristiques des items et des 
individus en remplaçant l’hypothèse d’unidimensionnalité par celle, moins contrai-
gnante, d’adéquation entre la dimensionnalité du MRI et la dimensionnalité du test 
(McKinley, 1988 ; McKinley et Reckase, 1983 ; Reckase, 1979, 1997a,b). On trou-
vera dans les ouvrages collectifs édités par Engelhard et Wilson (1996), van der 
Linden et Hambleton (1997), Wilson (1992, 1994) ou Wilson, Engelhard et Dra-
ney (1997) de nombreux exemples d’application de ces modèles à l’analyse de tests 
multidimensionnels, à l’analyse composantielle d’épreuves cognitives, à la modéli-
sation de processus de changement et d’apprentissage, etc.  

Ackerman (1996) propose de distinguer deux grandes catégories de mo-
dèles selon qu’ils appliquent ou non un principe de compensation entre dimen-
sions (ou composantes). Les modèles dits compensatoires font l’hypothèse 
d’autant de paramètres de discrimination que de dimensions mais d’un seul para-
mètre de difficulté de l’item. Un score élevé par rapport à une dimension peut 
donc compenser un score faible par rapport à une autre. Cette hypothèse n’est pas 
faite dans les modèles non compensatoires dont les termes sont multiplicatifs. Un 
paramètre de discrimination et un paramètre de difficulté sont alors associés à 
chaque dimension. Mathématiquement, les MRI multidimensionnels compensatoi-
res dont nous donnerons un exemple d’application plus loin utilisent la distribu-
tion logistique. Le parallèle avec l’analyse factorielle est donc moins immédiat qu’il 
ne l’est avec les modèles d’analyse factorielle non linéaire. L’équation du modèle 
définit une surface de réponse à l’item qui donne la probabilité de réponse correc-
te à l’item en fonction de la localisation des sujets dans l’espace des aptitudes 
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spécifié par le vecteur θi. Reckase (1997a) en propose par exemple la formulation 
suivante : 

( )
)'(

)'(

1
)1(1

jdija

jdija

jjiij
e

eccXP
+θ

+θ

+
−+=θ=  

où est le vecteur des paramètres de discrimination de l’item, le paramètre 
de difficulté de l’item et θ

'
ja jd

i le vecteur d’aptitudes de l’individu i. L’introduction 
dans l’exposant du modèle d’une matrice de structure de l’item Sj identifiant les 
dimensions mesurées permet son utilisation dans une logique confirmatoire11 
(McKinley, 1989). 

 L’estimation des paramètres de l’item pour des modèles de ce type peut être 
effectuée par exemple avec TESTMAP (McKinley, 1992) qui utilise la méthode 
MML. La procédure d’estimation est adaptée de celle utilisée dans le cas unidi-
mensionnel (procédure EM de  BILOG 3). Le programme fournit aussi des indi-
ces d’entropie sur lesquels l’utilisateur peut s’appuyer pour évaluer l’adéquation du 
modèle (AIC : Akaike Information Criterion ; CAIC : Consistent AIC). La stratégie 
confirmatoire recommandée pour tester des hypothèses de dimensionnalité 
consiste alors à comparer différents modèles du point de vue de leur adéquation 
aux données à partir d’une correspondance établie a priori entre les dimensions du 
modèle et les dimensions du test, identifiées sur la base d’une analyse des contenus 
(ou mieux, des processus) impliqués dans les items.  

 ILLUSTRATION 

 Nous appliquerons maintenant certaines des méthodes qui viennent d’être 
brièvement présentées à l’étude de la dimensionnalité de données dichotomiques 
recueillies à l’aide d’un test de raisonnement comportant 45 items à choix multiple 
administrés à 8685 jeunes adultes lors d’un concours de niveau baccalauréat. Les 
items de ce test sont répartis en trois échelles (voir figure 1 pour des exemples 
d’items).  

 La première échelle de “ Logique Opératoire ” (LO) comporte 16 items 
dont la résolution nécessite d’appliquer une ou plusieurs transformations à un 
symbole donné en fonction de règles à découvrir à partir d’informations apparais-
sant dans un tableau. La seconde échelle de “ Raisonnement Spatial ” (RS) com-

__________ 
11 L’expression devient alors où  est une matrice  spécifiant la ou les 
dimensions mesurées par l’item.  

jij da +θ'
jijj dSa +θ'

jS kk ×
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prend 15 items. La tâche consiste ici à faire mentalement la synthèse de grilles de 9 
cases afin de trouver celles qui, superposées les unes aux autres, forment la grille 
cible ; 3 grilles sont à identifier parmi les 6 présentées. La troisième échelle de 
“ Transformation de Lettres ” (TL) est composée de 14 items. Pour chaque item, 
il s’agit de compléter une série de lettres et d’appliquer au résultat provisoirement 
obtenu une règle de transformation donnée. 

♣

✇

➢

▲ ✧ ❁↔

✜

❤

♦ ➭

Si (♥ ) = ❁  et [➢ ] = , alors ( [✜ ] ) = ?
Réponse : ▲, ✧ , ➢ , ♣

a)

b)

a b c d e f

Réponse : abe, bcf, dbf, cef

c) Règle : -2, +1  - Série : ABCD ? ? – Réponse : EF, CG, GH, FD 
 

Figure 1 

Exemples d’items des échelles de Logique Opératoire (a), Raisonnement  

Spatial (b) et Transformation de Lettres (c). 

 Ce test de raisonnement étant par construction, constitué de trois échelles, il 
est théoriquement et pratiquement important de s’assurer de l’unidimensionnalité 
de chacune d’entre-elles. Plusieurs séries d’analyses conduites avec cet objectif 
sont décrites par la suite. L’hypothèse d’unidimensionnalité “ essentielle ” est 
d’abord testée avant d’appliquer les MRI unidimensionnels puis deux modèles 
multidimensionnels. Les résultats présentés servent essentiellement ici à illustrer 
l’intérêt des MRI dans l’étude de la dimensionnalité d’un ensemble de réponses 
dichotomiques réellement observées. 

Test de l’hypothèse d’unidimensionnalité “ essentielle ” 

 L’existence d’une dimension dominante par échelle est étudiée à l’aide de la 
procédure DIMTEST présentée précédemment. Les données dichotomiques 
auxquelles on a appliqué le programme DIMTEST (Stout, Douglas, Junker et 
Roussos, 1993) proviennent d’un sous-échantillon aléatoire de 2607 sujets. 
L’objectif étant d’évaluer dans quelle mesure les items de Logique Opératoire, de 
raisonnement Spatial et de Transformation de Lettres sont dimensionnellement 
différents les uns des autres, trois analyses ont été effectuées en affectant à chaque 
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fois tous les items d’une même échelle (LO, TL, RS) au sous-test d’évaluation 
AT1, le sous-test de partitionnement étant alors composé d’items des deux autres 
échelles.  

Tableau 1 

Statistiques fournies par le programme DIMTEST (LO : 16 items de Logique  

Opératoire ; RS : 15 items de Raisonnement Spatial ; TL : 14 items de 

 Transformation de Lettres ; N = 2607). 

Items composant
le sous-test AT1

Items composant les sous-
tests AT2 et PT

T1 T2 T de Stout p

LO TL+RS 13,842 9,375 4,467 .00000

RS TL+LO 11,917 5,681 6,236 .00000

TL LO+RS 21,987 10,623 11,365 .00000
 

 Comme on peut le voir dans le tableau 1, les valeurs du T de Stout sont 
toutes significativement différentes de 0. Ces résultats conduisent donc comme 
attendu à rejeter l’hypothèse d’unidimensionnalité de l’ensemble des 45 items. Ils 
montrent parallèlement qu’en comparaison à un ensemble d’items dont la diffi-
culté est distribuée semblablement, les échelles de Logique Opératoire, de Raison-
nement Spatial et de Transformation de Lettres sont respectivement essentielle-
ment unidimensionnelles. Cette première analyse suggère donc que chacune des 
trois échelles mesure une dimension dominante sans exclure pour autant 
l’existence de dimensions mineures pouvant sous-tendre les réponses aux items du 
test de raisonnement. 

Vérification de l’hypothèse d’unidimensionnalité avec les MRI  

unidimensionnels 

 On pourrait souhaiter prolonger les résultats précédents, obtenus à un 
niveau d’analyse inter-échelles, en appliquant DIMTEST aux seuls items de 
chacune des 3 échelles. Il suffirait alors d’affecter un certain nombre d’items d’une 
même échelle à AT1 et d’appliquer la procédure autant de fois que l’on modifie le 
contenu de AT1 (items pairs, impairs, faciles, difficiles, etc.). Nandakumar (1993) 
recommande cependant de n’utiliser la procédure DIMTEST qu’avec 25 items au 
moins car la précision du T de Stout semble être très incertaine lorsque cette 
condition n’est pas remplie. 

 La procédure précédente ne pouvant être appliquée sur ces données, on 
peut utiliser la stratégie qui consiste à estimer sous hypothèse d’unidimensionnalité les 
paramètres d’un MRI unidimensionnel pour vérifier ensuite la validité des postu-
lats du modèle utilisé. Mais nous avons dit que la conception de 
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l’unidimensionnalité classiquement énoncée dans les MRI unidimensionnels est 
plus stricte que celle de l’unidimensionnalité essentielle. En pratique, le modèle 
choisi s’ajuste souvent difficilement aux données car il est bien rare qu’en plus de 
la dimension dominante, une ou plusieurs dimensions mineures ne participent à 
l’organisation des réponses observées. On sait de plus que la stabilité des paramè-
tres estimés est relativement sensible à la taille de l’échantillon et au nombre 
d’items. Les statistiques globales et analytiques accompagnant l’estimation des 
paramètres du MRI doivent donc toujours être interprétées avec prudence.  

 Nous prendrons pour exemple l’échelle de Transformation de Lettres dont 
les 14 items ont été construits en référence à un modèle cognitif dans lequel la 
difficulté de l’item, croissante du 1er au 14ème item, est définie a priori en fonction 
de la complexité de la règle et de la structure de la série (Butterfield, Nielsen, 
Tangen et Richardson, 1985). Conformément aux hypothèses de construction du 
matériel, on vérifie sur un échantillon aléatoire de 1000 sujets une baisse significa-
tive de la performance avec le rang de l’item dans l’échelle [Fexact(13, 987)=27,24 ; 
p=0,000]. La consistance interne de l’échelle mesurée par l’alpha de Cronbach est 
satisfaisante (0,89). L’amplitude moyenne des corrélations item-échelle (0,59) 
montre que les items ont une assez bonne puissance discriminative. On note enfin 
que les corrélations point-bisériales sont élevées et homogènes. 

Tableau 2 

Echelle de Transformation de Lettres : statistiques classiques (N = 1000). 

Item Probabilité de 
réussite p 

Corrélation 
item/échelle 

Corrélation 
point-bisériale 

1 0,708 0,603 0,799 

2 0,669 0,641 0,832 

3 0,600 0,424 0,538 

4 0,708 0,652 0,864 

5 0,652 0,581 0,749 

6 0,662 0,609 0,789 

7 0,676 0,638 0,831 

8 0,666 0,638 0,827 

9 0,650 0,567 0,730 

10 0,599 0,624 0,791 

11 0,513 0,567 0,711 

12 0,625 0,646 0,825 

13 0,616 0,615 0,783 

14 0,453 0,486 0,611 

 
98 
 



Psycho log i e  e t  P sychomét r i e .  Vo l .  20  –  N°  2/3  –  1999  
 

 L’unidimensionnalité hiérarchique des données (Dickes, ce numéro) est testée 
en appliquant le modèle de Rasch pour lequel tous les items sont considérés éga-
lement discriminants. On utilise le logiciel RSP (Glas et Ellis, 1993) qui propose 
plusieurs méthodes d’estimation de la difficulté bj de l’item (CML: maximum de 
vraisemblance conditionnel ; MML: maximum de vraisemblance marginal) et de 
l’aptitude θ (ML : maximum de vraisemblance ; WML : maximum de vraisem-
blance pondéré ; EAP : méthode bayésienne avec distribution a posteriori). RSP 
fournit aussi plusieurs statistiques globales pouvant contribuer à évaluer 
l’adéquation du modèle aux données. 

 Une première statistique (R0) est basée sur la différence entre la distribution 
des scores théoriques (pour les estimations par la méthode MML des paramètres 
de l’item et de la population) et celle des scores observés. Elle permet de tester 
l’hypothèse nulle de distribution normale du trait latent. La distribution asympto-
tique de R0 étant connue, l’aptitude θ est distribuée normalement si cet indice est 
statistiquement non-significatif. Le postulat d’unidimensionnalité du modèle peut 
être testé à l’aide de statistiques de 1er ou de 2nd ordre calculées après avoir divisé 
l’échantillon de sujets en sous-groupes de score homogène, à partir des estima-
tions fournies par la méthode MML (resp. CML) si le trait latent est (resp. n’est 
pas) distribué normalement. Les statistiques de 1er ordre (R1 ou Q1) permettent 
d’évaluer si les courbes caractéristiques de l’item (CCI) sont croissantes et ont la 
même forme logistique. Leur calcul est basé sur le dénombrement des réponses 
correctes à chacun des items dans chacun des sous-groupes. Leur valeur est fonc-
tion de l’amplitude des écarts entre le nombre observé et le nombre théorique 
d’individus de chacun des sous-groupes répondant correctement à l’item. Celle-ci 
est d’autant plus faible (au regard du nombre de degrés de liberté) que les CCI 
sont croissantes et de même forme logistique. Les statistiques de 2nd ordre (R2 si le 
nombre d’items est inférieur à 15, Q2 dans le cas contraire) sont sensibles au non-
respect du postulat d’unidimensionnalité. Elles sont calculées à partir des écarts, 
pour chacun des sous-groupes de sujets, entre le nombre observé et le nombre 
théorique de personnes ayant simultanément bien répondu à deux items. Leur 
valeur doit donc être d’autant plus faible, pour un nombre donné de degrés de 
liberté, que l’hypothèse d’indépendance locale des items est bien respectée. Ces 
différents indices ayant une distribution asymptotique du χ2, il est possible d’en 
tester la significativité. 
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Tableau 3 

Items de Transformation de Lettres:  

indices d’ajustement du modèle de Rasch (programme RSP) pour des échantillons 

aléatoires de 100, 200, 500 et 1000 sujets (utilisation de la méthode CML lorsque 

l’hypothèse de normalité du trait latent est réfutée). 

Nombre 
de sujets 

Méthode 
d’estimation

R0 ddl p R1 ddl p R2 ddl 
 

P 

100 MML 12,294 12 0,4223  37,763 25 0,0488 159,556 102 0,0002 

200 MML 38,463 12 0,0001       

 CML    57,402 39 0,0289 150,625 84 0,0000 

500 MML 33,745 12 0.0007       

 CML    82,773 39 0,0001 138,314 84 0,0002 

1000 MML 79,802 12 0.0000       

 CML    181,098 52 0,0000 361,398 84 0,0000 

 Les valeurs des statistiques obtenues en appliquant RSP à des échantillons 
de taille différente sont présentées dans le tableau 3. Les résultats des tests de 
significativité apparaissent clairement liés à la taille de l’échantillon. L’examen des 
probabilités associées à R0 révèle en effet que l’hypothèse de normalité du trait 
latent n’est respectée que pour le seul échantillon de 100 sujets et que les 
probabilités associées à R1 (postulat de monotonie et de similitude des CCI) ne 
sont non significatives que pour les échantillons de faible effectif. On est enfin 
conduit, quelle que soit la taille de l’échantillon, à rejeter l’hypothèse 
d’unidimensionnalité du trait latent. Malgré un nombre d’items un peu faible pour 
pouvoir considérer les estimations fournies comme vraiment satisfaisantes, 
l’adéquation du modèle de Rasch aux données recueillies avec TL n’est pas bonne. 
On peut néanmoins améliorer l’ajustement du modèle de Rasch en éliminant les 
items les plus “ problématiques ” que l’examen des statistiques locales (Q 
normalisés, U) permet de repérer. Bien que réduisant la fidélité de l’échelle, la 
suppression des items 3 et 14 conduit ainsi à une meilleure adéquation du modèle 
aux données [R0=27,499 ; ddl=10 ; p=0,0022 ; R1=43,314 ; ddl=33 ; p=0,108 ; 
R2=70,863 ; ddl=60; p=0,159 ; méthode CML, N=500 sujets]. Mais il faut 
éliminer 6 items sur les 14 que comporte l’échelle pour que le modèle de Rasch 
s’ajuste à peu près correctement sur un échantillon de 1000 sujets. Il paraît donc 
raisonnable de conclure que l’hypothèse d’unidimensionnalité hiérarchique n’est 
qu’assez peu compatible avec l’organisation des données recueillies avec 
l’ensemble des items de l’échelle de Transformation de Lettres. 
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 Qu’en est-il maintenant de la compatibilité de l’hypothèse d’unidimen-
sionnalité non hiérarchique telle qu’elle est comprise dans les MRI unidimensionnels 
qui prennent en compte la puissance de discrimination des items (paramètre aj de 
discrimination) et la possibilité de répondre correctement au hasard (asymptote 
basse cj ou paramètre de pseudo-chance) ? 

 Pour tenter de répondre à cette question, nous avons utilisé le logiciel 
BILOG 3 (Mislevy et Bock, 1990) qui permet d’estimer les MRI unidimensionnels 
à plusieurs paramètres (calibration de l’item avec la méthode MML). Les modèles 
à 2 paramètres (aj, bj) et à 3 paramètres12 (aj, bj, cj) ont été appliqués aux réponses 
des 1000 sujets de l’échantillon précédent (échelle TL). Le nombre d’items étant 
ici inférieur à 20, BILOG 3 ne fournit pas de test statistique13 permettant d’évaluer 
l’adéquation de ces modèles aux données. Les auteurs recommandent dans ce cas 
l’étude, item par item et en différents points de quadrature du trait latent θ, des 
“ résidus postérieurs standardisés ” (Standardized Posterior Residuals). Ces résidus 
standardisés sont calculés en chaque point de quadrature par différence entre la 
probabilité postérieure de réussite à l’item et la probabilité déduite du modèle 
correspondant. BILOG 3 fournit aussi une statistique moyenne d’ajustement de 
l’item (la racine carrée de la moyenne des carrés des résidus postérieurs : RMR). 
Globalement, une valeur de cette dernière supérieure à 2 est considérée comme 
témoignant d’un mauvais ajustement de l’item14. 

 Les résultats obtenus en appliquant les modèles à 2 et 3 paramètres à 
l’ensemble des items de l’échelle sont présentés dans le tableau 4. On voit immé-
diatement que par rapport au modèle à 1 paramètre (valeur identique du paramè-
tre de discrimination pour tous les items), c’est avec le modèle à 2 paramètres que 
le nombre d’items pour lesquels le RMR est supérieur à 2 est le plus faible. Les 
postulats posés sur les données par les modèles à 2 ou à 3 paramètres semblent 
donc mieux respectés que ceux du modèle de Rasch. La comparaison des estima-
tions fournies pour les modèles à 2 et 3 paramètres est plus incertaine d’autant que 
le gain d’ajustement apporté par un modèle en comparaison à un autre ne peut 
être testé avec BILOG 3. On peut remarquer que le nombre d’items non confor-
mes est un peu plus faible pour le modèle à 2 paramètres qu’il ne l’est pour celui à 
3 paramètres et que la corrélation entre les paramètres de discrimination et de 
difficulté est plus importante pour le modèle à 2 paramètres ( r ) 484,0−=

jbja

__________ 
12 Quatre alternatives de réponse étaient en effet offertes aux sujets. 
13 BILOG 3 ne fournit un test du chi-deux du rapport de vraisemblance que lorsque l’analyse porte sur 
plus de 20 items. 
14 Cette valeur communément employée correspond approximativement à une erreur de type I de .05. 
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qu’elle ne l’est pour celui à 3 paramètres ( ). Une évaluation plus fine 
de l’ajustement de ces deux modèles pourrait profiter de la comparaison de 
l’invariance des paramètres de l’individu (resp. de l’item) estimés sur des groupes 
d’items (resp. d’individus) différents ainsi que de l’examen, item par item et pour 
chaque modèle, des graphes des résidus standardisés.   

017,0−=
jbja

r

Tableau 4 

MRI unidimensionnels à 1, 2 et 3 paramètres : estimations fournies 

par BILOG 3 pour les 14 items de Transformation de Lettres 

(aj : puissance discriminative ; bj : difficulté ; cj : asymptote basse ou 

paramètre de pseudo-chance ; RMR : résidu moyen) (N=1000). 

Item Modèle de Rasch 
 (1 paramètre) 

  MRI  
à 2 paramètres 

  MRI  
à 3 paramètres 

  

 bj RMR aj bj RMR aj bj cj RMR 

1 -0,816 1,453 1,153 -0,814 0,804 1,398 -0,527 0,146 0,918 

2 -0,654 0,925 1,266 -0,637 1,416 1,392 -0,466 0,081 2,322 

3 -0,388 6,544 0,631 -0,522 1,021 0,802 -0,060 0,179 1,453 

4 -0,816 4,483 1,402 -0,769 1,115 1,539 -0,598 0,086 2,453 

5 -0,587 0,893 1,032 -0,614 0,704 1,210 -0,363 0,118 1,388 

6 -0,627 2,098 1,134 -0,633 1,890 1,236 -0,456 0,083 2,378 

7 -0,682 3,540 1,231 -0,670 3,348 1,299 -0,527 0,067 3,578 

8 -0,642 2,727 1,256 -0,627 1,569 1,344 -0,462 0,079 2,447 

9 -0,580 2,276 0,967 -0,621 1,948 1,394 -0,182 0,202 0,685 

10 -0,383 1,864 1,180 -0,388 1,117 1,491 -0,152 0,105 1,277 

11 -0,068 2,277 1,013 -0,085 1,979 1,438 0,169 0,111 1,168 

12 -0,483 3,394 1,295 -0,470 2,282 1,845 -0,169 0,140 0,553 

13 -0,448 1,902 1,155 -0,454 1,584 1,546 -0,160 0,134 0,653 

14 0,146 3,840 0,814 0,151 2,634 1,362 0,426 0,130 1,144 

En gras, RMR>2 ; en italiques, aj<0,8. 

 Les résultats apparaissant dans le tableau 4 montrent que l’hypothèse 
d’unidimensionnalité non hiérarchique est plus compatible avec les réponses 
observées avec l’échelle de Transformation de Lettres dont seraient par exemple 
éliminés les items 7, 12 et 14 que ne l’est celle d’unidimensionnalité hiérarchique. 
On voit néanmoins que l’application d’un MRI unidimensionnel doit souvent 
s’accompagner de l’élimination, souvent problématique (Flieller, 1994), d’un nom-
bre plus ou moins important d’items pour pouvoir espérer parvenir au respect des 
postulats posés par le modèle et aboutir, par une sorte de mise à l’épreuve conti-
nuée, à une représentation certes unidimensionnelle mais s’appliquant à un nom-
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bre réduit d’items sélectionnés empiriquement. L’intérêt de ces modèles unidi-
mensionnels réside donc moins dans la possibilité offerte de juger la dimensionna-
lité d’un ensemble donné d’items que dans celle d’atteindre empiriquement 
l’unidimensionnalité par élimination d’items non conformes ou par regroupement 
d’items adéquats en sous-groupes plus homogènes.  

Utilisation des modèles multidimensionnels 

 L’étude de la dimensionnalité de données dichotomiques peut aussi et sur-
tout bénéficier de l’utilisation de l’analyse factorielle d’items et des MRI multidi-
mensionnels. L’intérêt de ces approches multidimensionnelles sera illustré par un 
exemple qui utilise les réponses des sujets à 24 items du test de raisonnement (8 
items de LO, 8 items de RS et 8 items de TL) choisis pour avoir conduit à un taux 
de réussite intermédiaire. Deux échantillons aléatoires de 1000 sujets sont consti-
tués. L’hypothèse que l’on souhaite vérifier et que le graphique des valeurs propres 
de la matrice des corrélations tétrachoriques estimées à partir des données de 
l’échantillon 1 (figure 2) ne semble d’ailleurs pas contredire, est celle de l’existence 
d’une dimension par échelle.  
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Figure 2 

Graphique des valeurs propres de la matrice de corrélations tétrachoriques entre 24 items 

du test de raisonnement (échantillon 1, N=1000). 

 On applique d’abord aux données de l’échantillon 1 le modèle d’analyse 
factorielle non linéaire de McDonald (programme NOHARM, Fraser et McDo-
nald, 1988). NOHARM estimant les paramètres pour le modèle ogive normale à 2 
paramètres, les valeurs de cj sont d’abord calculées au moyen de BILOG 3 puis 
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fixées dans le modèle. Plusieurs analyses confirmatoires sont ensuite réalisées sur 
les données du 1er échantillon afin d’estimer les paramètres de la solution unidi-
mensionnelle, de la solution à 3 facteurs orthogonaux LO, RS et TL et d’une 
solution à 3 facteurs (LO, LO-RS-TL, TL) suggérée par les résultats d’analyses 
effectuées avec DIMTEST montrant que LO est dimensionnellement distincte de 
RS et TL (T=8,763 ; p=0,000), que TL est dimensionnellement distincte de LO et 
RS (T=6,909 ; p=0,000) mais que RS n’est pas dimensionnellement distincte de 
LO et TL (T=0,585 ; p=0,279). 

Tableau 6 

An i-
que Op n de 

Nombre de dimensions Items correspondants Nombre d’itérations RMR  

alyse factorielle non linéaire confirmatoire d’items (NOHARM) (LO : items de Log
ératoire ; RS : items de Raisonnement Spatial ; TL : items de Transformatio

Lettres ; RMR : moyenne des covariances résiduelles ; échantillon 1 ; N = 1000). 

1 LO-RS-TL 111 0,02356 

3 LO, RS, TL 80 0,01981 

3  L   O, RS-TL, TL 9 0,01866 

 Les informations présentées dans le tableau 6 résument au plan de 

__________ 
15 Ici 

l’ajustement global les résultats de ces analyses. La meilleure solution est identifiée 
à partir de l’examen de la matrice des covariances résiduelles inter-items. 
L’adéquation du modèle est ici d’autant meilleure que le RMR (Root Mean Square 
Residual), une mesure de la moyenne des covariances résiduelles, est faible. On voit 
clairement que la solution unidimensionnelle présente un moins bon ajustement 
que les solutions multidimensionnelles parmi lesquelles la solution faisant 
l’hypothèse de trois dimensions respectivement mesurées par les items de LO, par 
ceux de RS et Tl et par ceux de TL, s’avère être la plus adéquate. La comparaison 
paire d’items par paire d’items entre covariances résiduelles et covariances obser-
vées met en outre en lumière un problème d’ajustement spécifique aux items de 
LO. La moyenne des covariances résiduelles entre ces seuls items est en effet très 
élevée au regard de celle des covariances observées (0,049 vs 0,066) alors que ce 
résultat n’est pas observé lorsqu’on considère par exemple les seuls items de TL 
(0,0001 vs 0.085). Ce défaut d’adéquation (le RMR est largement supérieur à 
l’erreur-type des résidus15) montre donc que contrairement aux items de TL, les 
items de LO ne satisfont pas à l’exigence d’indépendance locale16 et ne pourraient 

0268,0/1 =N . 
16 Ce résultat se comprend bien quand on sait que les items de LO ont été construits en référence à un 
mo  dans lequel la difficulté de l’item croît progressivement en fonction de règles que 
l’ riser au cours de la tâche. 

dèle cognitif
du apprend à mindivi aît
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donc être ajustés de manière satisfaisante par un MRI unidimensionnel non dé-
pendant localement. 

Tableau 7 

Modèle à 3 dimensions orthogona ions fournies par les programmes 

N j3, 

(p : prob 1000). 

 Modèle NOHARM 

en facteurs communs 

MRI multidimensionnel 

les: estimat

OHARM (paramétrisation en facteurs communs : seuil γj, saturations λj1, λj2, et λ
unicité ψj ; et TESTMAP (paramétrisation en traits latents : paramètres aj1, aj2 et aj3 de 

discrimination ; paramètre dj de difficulté de l’item)  

abilité observée de réussite à l’item ; échantillon 2 ; N=

Paramétrisation  à 2 paramètres  

λj1 λj2 λj3 

1LO 0,  - 5  - - 2 4 8 - - 692 0,29 0,984 0,03 0,76 0,93 0,938 -0,814 
2LO 0,462 -1,458 0,984 - - 0,031 -0,077 0,617 - - 0,617 0,125 
3LO 0,600 -0,842 0,985 - - 0,029 0,422 0,940 - - 0,940 -0,449 
4LO 0,572 -1,033 0,986 - - 0,028 0,349 1,044 - - 1,044 -0,334 
5LO 0,398 -1,399 0,986 - - 0,029 -0,292 0,802 - - 0,802 0,364 
6LO 0,419 -1,327 0,986 - - 0,027 -0,230 0,887 - - 0,887 0,259 
7LO 0,431 -1,325 0,986 - - 0,027 -0,187 0,878 - - 0,878 0,213 
8LO 0,355 -1,618 0,984 - - 0,037 -0,382 0,497 - - 0,497 0,769 
9RS 0,852 0,833 - 0,62 0,398 - 0,605 1,127 - 4 - 0,394 -2,860 

10RS 0,521 -0,922 - 0,896 - 0,197 0,056 - 0,238 - 0,238 -0,235 
11RS 0,817 0,680 - 0,782 - 0,389 0,971 - 0,400 - 0,400 -2,428 
12RS 0,452 -0,986 - 0,979 - 0,042 -0,121 - 0,524 - 0,524 0,231 
13RS 0,518 -0,999 - 0,982 - 0,037 0,070 - 0,629 - 0,629 -0,111 
14RS 0,382 -1,084 - 0,981 - 0,037 -0,341 - 0,657 - 0,657 0,519 
15RS 0,386 -0,971 - 0,985 - 0,029 -0,429 - 1,124 - 1,124 0,382 
16RS 0,378 -1,297 - 0,984 - 0,033 -0,371 - 0,750 - 0,750 0,495 
17TL 0,727 0,460 - 0,313 0,82 1,033 0,226 0,904 - 0,491 6 1,146 -0,789 
18TL 0,691 0,400 - 0,384 0,790 0,228 0,763 - 0,538 1,088 1,214 -0,629 
19TL 0,745 0,524 - 0,402 0,870 0,082 1,106 - 0,528 1,251 1,358 -0,815 
20TL 0,697 0,418 - 0,424 0,766 0,234 0,797 - 0,548 1,098 1,227 -0,649 
21TL 0,710 0,341 - 0,366 0,794 0,236 0,798 - 0,478 0,973 1,084 -0,736 
22TL 0,672 0,377 - 0,092 0,958 0,075 0,725 - 0,500 1,259 1,355 -0,535 
23TL 0,677 0,352 - 0,287 0,768 0,328 0,644 - 0,352 1,008 1,068 -0,603 
24TL 0,503 -0,098 - 0,304 0,655 0,479 -0,031 - 0,313 0,794 0,853 0,036 

Nous avons enf  comme le suggèrent p exemple Mc onald (1997)

Item p γj ψj dj aj1 aj2 aj3 MDISCj MDIFFj 

 in, ar D   et 
Reckase (1997a), tenté de valider la structure dimensionnelle identifiée en répli-
quant ces analyses sur un échantillon équivalent de sujets. Des résultats tout à fait 
semblables étant observés sur ce second échantillon, nous avons retenu la solution 
à 3 facteurs orthogonaux (LO, RS-TL, TL) dont les paramètres apparaissent dans 
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le tableau 7. La paramétrisation en facteurs communs, dérivée de celle en traits 
latents non présentée ici, permet d’interpréter ces paramètres aisément (McDo-
nald, 1997). Le paramètre de seuil jγ  est la transformation normale inverse du 
paramètre classique p de difficulté de l’item : la valeur du seuil est donc d’autant 
moins élevée que l’item est difficile (la corrélation entre jγ  et p est de 0,922). 
Quant aux saturations λjk et aux unicités, elles s’interprètent comme habituelle-
ment en analyse factorielle. On remarque ainsi que la 2nde dimension est bien 
mesurée par les items de RS et dans une moindre mesure par ceux de TL (à 
l’exception de l’item 22) ou que les items de TL sont dimensionnellement plus 
complexes que ceux de LO qui saturent uniquement et extrêmement fortement la 
1ère dimension. L’examen des unicités permet par ailleurs de repérer les items dont 
la variance non prise en compte par les dimensions du modèle est importante 
(e.g., les items 9, 10, 11 et la très grande majorité des items de TL).  

 Cette même démarche confirmatoire a guidé l’application des MRI multidi-
mensionnels à 2 et 3 paramètres (programme TESTMAP, McKinley, 1992) dont 
nous avons dit qu’ils apportent des informations spécifiques du point de vue des 
caractéristiques des items. Plusieurs modèles faisant les mêmes hypothèses dimen-
sionnelles que ceux testés précédemment avec NOHARM ont donc été appliqués 

x d

 2 paramètres paramètres 

au onnées de l’échantillon 2. L’adéquation de chacun de ces modèles est évaluée 
avec le CAIC, une statistique dérivée du logarithme de la vraisemblance de la 
solution et interprétable en termes de proximité du modèle par rapport au modèle 
vrai. L’adéquation du modèle est donc d’autant meilleure que la valeur du CAIC 
est plus faible. Les résultats obtenus sont conformes aux constatations effectuées 
avec NOHARM ; la solution qui présente la meilleure adéquation et pour laquelle 
aucun problème de convergence n’est rencontré est celle à 3 dimensions LO, RS-
TL et TL, le MRI à 2 paramètres s’ajustant globalement un peu mieux que celui à 
3 paramètres (tableau 8).  

Tableau 8 

Valeurs du CAIC (Consistent Akaike Information Criterion) pour chacun des MRI appli-

qués aux données de l’échantillon 2 (N = 1000). 

Nombre de 
dimensions 

Items corres-
pondants

MRI multidimensionnel à MRI multidimensionnel à 3 

1  LO-RS-TL 28612,29 28636,48 
3  LO, RS,TL 27210,56 27107,05 
3 LO, RS-TL,TL 27029,68 27132,04 

présenté les estimations fournies par TEST Nous avons MAP et certaines 

sta éri  m s  

(tablea ) afin la compa s résultats obte les deux 

tistiques d vées dans le ême tableau que celle  fournies par NOHARM

u 7 de faciliter raison de nus avec 

 
106 
 



Psycho log i e  e t  P sychomét r i e .  Vo l .  20  –  N°  2/3  –  1999  
 

méthodes. Les corrélations entre les k θ étant nulles, les paramètres ajk 

rendent compte à eux seuls des corrélations entre les scores aux items. Ces para-

mètres de discrimination peuvent être interprétés pour chaque dimension comme 

ils le sont dans les MRI unidimensionnels (Reckase, 1997a, Ackerman, 1996). Ils 

indiquent la sensibilité de l’item aux différences d’aptitude sur le continuum latent 

correspondant. On remarque ainsi qu’à l’exception des items 15 et 16, les items de 

l’échelle RS ont une faible puissance discriminative ou que les items 8 et 2 de 

l’échelle LO sont insuffisamment discriminants. Un indicateur plus global 

 dimensions 

( ∑=MDISC jkj a ) permet de mesurer, pour la meilleure combinaison d’aptitudes, 

la puissance discriminative des items multidimensionnels. C’est le cas des items de 

l’échelle TL, globalement d’une puissance discriminative élevée mais logiquement 

plus sensibles aux différences d’aptitude par rapport à la 3ème dimension qu’ils ne 

le sont par rapport à la 2 .  

 Par ailleurs et ainsi que le souligne (Reckase, 1997a), l’interprétation du 

paramètre dj lié à la difficulté de l’item ne peut se faire comme celle du paramètre 

bj dans les MRI unidimensionnels. Une statistique interprétable comme bj 

( jMDIFF jd−= ) peut néanm

2

nde

jMDISC
oins être calculée ; celle-ci indique la distance entre 

s, la 
comparaison des résultats obtenus montre l’existence d’une forte relation entre les 

l’origine de l’espace latent et le point où la pente de la surface de réponse à l’item 

est la plus prononcée. A une valeur élevée de cette statistique correspondent donc 

un niveau élevé de difficulté de l’item et une faible probabilité de réponse à l’item 

(la distribution de MDIFFj présente une corrélation de -0,91 avec celle de p).  

 Au total, l’utilisation de ces deux approches multidimensionnelles dans 
l’étude de la dimensionnalité des données dichotomiques recueillies avec les trois 
échelles du test de raisonnement aboutit à l’identification d’une même structure 
dimensionnelle. Du point de vue de l’analyse des caractéristiques des item

valeurs du paramètre de seuil jγ  de l’analyse factorielle non linéaire et celles de 
l’indicateur global de difficulté du MRI multidimensionnel à 2 paramètres (corrél-
ation de -0,800 entre jγ  et MDIFFj). L’observation d’une corrélation non négli-
geable (0,374) entre jγ  et MDISCj et de corrélations moyennes entre les satura-
tions λjk (souvent très élevées) et les paramètres de discrimination ajk (resp. 0,581, 
0,442 et 0,900 pour les dimensions 1, 2 et 3) amène cependant à préférer la se-
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conde approche qui semble mieux distinguer les paramètres de discrimination et 
de difficulté ( 057,0)MDISCMDIFF( =jr ) des 24 items considérés et faciliter par 
là-même l’analyse de leurs propriétés psychométriques. Une fois identifiée la 
structure dimensionnelle des données et effectué le calibrage multidimensionnel 
des items, les scores individuels peuvent être estimés pour chacune des trois di-
mensions retenues (e.g., au moyen du programme THSCORE de Ferrando et 
Lorenzo, 1998

CONCLUSION 

 Beaucoup de psychologues, assez réticents à l’égard des postulats qui fon-
dent l’emploi des MRI unidimensionnels (e.g., Reuchlin, 1997), limitent souvent 
l’usage de ces m

,j

les à

MRI 

).  

od  la construction
items d’un test de vocabulair

 aux unidimensionne

è

 

 d’ensembles d’items homogènes, par 
exemple les e, dont le caractère d’unidimensionnalité 

ls. Les développements auxquels l’étude 
es M

spécifiées du modèle sous-jacent et des 

est vérifié grâce
d RI a conduit ces vingt dernières années offrent pourtant des perspectives, 
tant au plan théorique qu’au plan des applications, qu’il serait dommage de négli-
ger (e.g., De Boeck et Van Mechelen, ce numéro). Nous avons pour notre part 
essayé d’illustrer l’intérêt de certaines extensions multidimensionnelles de ces 
modèles dans l’abord d’un problème important en psychologie différentielle, celui 
de la structure dimensionnelle d’un ensemble d’items, ici dichotomiques, adminis-
trés à une catégorie donnée d’individus.  

  Nous avons utilisé dans ce travail plusieurs méthodes basées sur les MRI 
paramétriques et non paramétriques. Les conclusions auxquelles peuvent conduire 
les résultats obtenus sont bien évidemment fonction du type d’objectif fixé et du 
niveau d’analyse privilégié. Elles dépendent aussi de la définition donnée de 
l’unidimensionnalité, des caractéristiques 
techniques d’estimation employées. Aucune procédure n’étant unanimement 
acceptée pour évaluer la structure dimensionnelle de données dichotomiques, 
l’utilisation de plusieurs méthodes d’analyse s’impose donc le plus souvent, 
l’utilisation dans une démarche confirmatoire de confrontation entre une 
modélisation spécifiée a priori et les données d’observation étant la plus 
heuristique. Dans cette perspective et malgré les difficultés associées à leur emploi, 
les modèles multidimensionnels sur lesquels nous avons plus particulièrement 
insisté dans ce travail nous paraissent offrir d’utiles perspectives, tant du point de 
vue de l’identification de la structure dimensionnelle des données que de celui de 
l’analyse psychométrique des items permettant la mesure multidimensionnelle des 
différences individuelles.  

 
108 
 



Psycho log i e  e t  P sychomét r i e .  Vo l .  20  –  N°  2/3  –  1999  
 

BIBLIOGRAPHIE 

 
Ackerman, T. (1996). Graphical representation of multidimensional IRT analyses. Applied 
Psychological Measurement, 20, 311-329. 

eng, G. (1989). Factoring items and factoring scales are different : 
Spurious evidence for multidimensionality due to item categorisation. Psychological Bulletin, 
05, 467-477. 

ginal maximum likelihood estimation of item parame-
ters : An application of the EM algorithm. Psychometrika, 46, 433-449. 

surement, 12, 261-280. 

d.), Test design : Devel-
opments in psychology and psychometrics (pp. 77-147). Orlando, Academic Press. 

fficulty and chance success on correlations between 
items and between tests. Psychometrika, 26, 347-372. 

r factor analytic 
model. Educational and Psychological Measurement, 57, 174-178. 

giques d’application. Psychologie Française, 
41, 9-22.  

gram for obtaining ability esti-

amètre 
(modèle de Rasch). Mathématiques, Informatique et Sciences Humaines, 127, 19-47. 

ariate Behavioral Research, 23, 267-269. 

p. 147-200). New York : Macmillan. 

Bernstein, I.H., & T

1

Bock, R.D., & Aitkin, M. (1981). Mar

Bock, R.D., Gibbons, R., & Muraki, E. (1988). Full information item factor analysis. Applied 
Psychological Mea

Butterfield, E., Nielsen, D., Tangen, K.L., & Richardson, M.B. (1985). Theoretically based 
psychometric measures of inductive reasoning. In S.E. Embretson (E

Carroll, J.B. (1945). The effects of di

De Champlain, A., & Linda Tang, K. (1997). CHIDIM* : A Fortran program for assessing 
the dimensionality of binary item responses based on McDonald’s nonlinea

Dickes, P. (1996). L’analyse factorielle et ses deux lo

Dickes, P., Flieller, A., Tournois, J. & Kop, J.-L. (1994). La psychométrie. Paris : PUF. 

Ferrando, P.J. & Lorenzo, U. (1998). TH-SCORE*: A pro
mates under different psychometric models. Educational and Psychological Measurement, 58, 841-
845. 

Flieller, A. (1994). Méthodes d’étude de l’adéquation au modèle logistique à un par

Fraser, C., & McDonald, R.P. (1988). NOHARM* : Least squares item factor analysis. 
Multiv

Glas, C.A.W., & Ellis, J.J. (1993). Rasch Scaling Program (RSP): User’s manual. ProGamma, 
Groningen : The Netherlands. 

Hambleton, R.K. (1989). Principles and selected applications of item response theory. In 
R.L. Linn (Ed.), Educational measurement (3rd ed., p

Hambleton, R.K. & Swaminathan, H. (1985). Item Response Theory : Principles and applications. 
Boston : Kluwer. 

 
109 

 

 



Psycho log i e  e t  P sychomét r i e .  Vo l .  20  –  N°  2/3  –  1999  

Hambleton, R.K., & Rovinelli, R.J. (1986). Assessing the dimensionality of a set of test 
items. Applied Psychological Measurement, 10, 287-302. 

Hambleton, R.K., Swaminathan, H., & Rogers, H.J. (1991). Fundamentals of Item Response 
Theory. London : Sage Publications. 

Applied Psychological measurement, 20, 1-14. 

ald, R.P. (1982). Linear versus nonlinear models in item response theory. Applied 

. Normal-Ogive Multidimensional Model. In W. van der Linden & 
k : 

Springer Verlag. 

sionality using confirmatory multidimensional IRT. Paper 
presented at the Annual Meeting of the American Educational Research. 

cational Testing Service, Princeton, NJ. 

logistic model to the 

is and test scoring with binary logistic 

Hattie, J. (1985). Methodological review : Assessing unidimensionality for tests and items. 
Applied Psychological Measurement, 9, 139-164. 

Hattie, J., Krakowski, K., Rogers, H.J., & Swaminathan, H. (1996). An assessment of Stout’s 
index of essential unidimensionality. 

Hoskens, M. & De Boeck, P. (1997). A parametric model for local dependence among test 
items. Psychological Methods, 2, 261-275. 

Laveault, D., Zumbo, B., Gessaroli, M.E., & Boss, M.W. (Eds.). Modern theories of measure-
ment : Problems and issues. Ottawa : Edumetrics Research Group. 

Lord, F. (1980). Applications of Item Response Theory to practical testing problems. Hillsdale, N.J. : 
LEA. 

Lord, F., & Novick, M. (Eds.) (1968). Statistical theories of mental test scores. Reading, MA : 
Addison-Wesley.  

McDonald, R.P. (1967). Non linear factor analysis. Psychometric Monographs, N° 15, 1-167. 

McDon
Psychological Measurement, 6, 379-396. 

McDonald, R.P. (1997)
R. Hambleton (Eds.), Handbook of modern item repose theory  (pp. 257-269). New Yor

McKinley, R.L. (1988). Assessing dimen

McKinley, R.L. (1989). Confirmatory analysis of test structure using multidimensional IRT. Research 
report 89-31, Edu

McKinley, R.L. (1992). TestMap 2.1* : User’s guide. Princeton, NJ : ETS. 

McKinley, R.L., & Reckase, M. (1983). An extension of the two-parameter 
multidimensional latent space. Research report ONR83-2. Iowa city, IA : ACT. 

Mislevy, R.J., & Bock, R.D. (1990). BILOG 3 : Item analys
models. Chicago:  Scientific Software.  

Mokken, R.J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichoto-
mous item responses. Applied Psychological Measurement, 6, 417-430. 

Nandakumar, R. (1991). Traditional dimensionality versus essential dimensionality. Journal of 
Educational Measurement, 28, 99-117. 

 
110 
 



Psycho log i e  e t  P sychomét r i e .  Vo l .  20  –  N°  2/3  –  1999  
 

Nandakumar, R. (1993). Assessing essential unidimensionality of real data. Applied Psychologi-
cal Measurement, 17, 29-38. 

Nandakumar, R. & Stout, W. (1993). Refinements of Stout’s procedure for assessing latent 
trait unidimensionality. Journal of Educational Statistics, 18, 41-68. 

tional Research). Chicago, The University of Chicago Press. 

tem 
response theory (pp. 271-286). New York : Springer. 

nsional item response theory. Applied 
Psychological Measurement, 21, 25-36. 

metric IRT approaches to the analysis of 

roach for determining the latent trait dimensionality in 

o : Scientific Software.  

ective measurement : Theory into practice (Vol. 2). Greenwich : Ablex. 

Rasch, G. (1960/1980). Probabilistic models for some intelligence and attainment tests. (Copenhagen 
Danish Institute For Educa

Reckase, M. (1979). Unifactor latent trait models applied to multifactor tests : Results and 
implications. Journal of Educational Statistics, 4, 207-230. 

Reckase, M. (1997a). A linear logistic multidimensional model for dichotomous item 
response model. In W. van der Linden & R. K. Hambleton (Eds.), Handbook of modern i

Reckase, M. (1997b). The past and future of multidime

Reuchlin, M. (1997). La psychologie différentielle. Paris: PUF. 

Sijtsma, K. (1998). Methodology review : Nonpara
dichotomous item scores. Applied Psychological Measurement, 22, 3-31. 

Stout, W. (1987). A statistical app
psychological testing. Psychometrika, 55, 293-326. 

Stout, W., Douglas, J., Junker, B., & Roussos, L. (1993). DIMTEST* Manual. Department of 
Statistics, University of Illinois at Urbana-Champaign. 

van der Linden, W. & Hambleton, R. (Eds.), Handbook of modern item response theory. New 
York : Springer Verlag. 

Verhelst, N.D., & Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. 
Psychometrika, 58, 395-415.  

Wilson, D., Wood, R., & Gibbons, R.D. (1991). TESTFACT : Test scoring, item statistics, and 
item factor analysis. Chicag

Wilson, M. (1992) (Ed.). Objective measurement : Theory into practice (Vol. 1). Greenwich : Ablex. 

Wilson, M. (1994) (Ed.). Obj

Wilson, M., Engelhard, G. & Draney, K. (Eds.) (1997). Objective measurement : Theory into 
practice (Vol. 4). Greenwich : Ablex. 

Wright, B.D., & Stone, M.H. (1979). Best test design. Chicago : MESA Press. 

 

Note: Les programmes marqués d’une astérisque peuvent être obtenus gratuite-
ment auprès des auteurs. 

 
111 

 

 


	Etude de la dimensionnalité
	d’un test de raisonnement à l’aide
	des Modèles de Réponse à l’Item
	Summary :Several Item Response Theory \(IRT\) 
	Key words :Dimensionality, nonlinear factorial a�
	Résumé :Plusieurs méthodes basées sur les Mod�
	Introduction
	
	
	
	Les procédures non paramétriques
	Les MRI unidimensionnels
	L’analyse factorielle linéaire des corrélations 
	Les approches multidimensionnelles
	Les méthodes d’analyse factorielle non linéaire

	Les MRI multidimensionnels



	Illustration
	
	
	
	
	Tableau 6
	Tableau 8





	Conclusion

	Bibliographie

