N. Jégou

Université Rennes 2

Master 1 Géographie

Plan du cours

- Introduction
- Nuages N_p et N_n
- La méthode
- Interprétation

Ouvrages

- Pagès J., Statistique générale pour utilisateurs :
 1) Méthodologie, PUR (2010)
- Pagès J., Analyse Factorielle multiple avec R EDP Sciences (2013)
- Cornillon et al., Statistique avec R PUR (2012)
- Vidéos et Tutoriels R sur la page d'Agrocampus Ouest

http://math.agrocampus-ouest.fr/infoglueDeliverLive/enseignement/support2cours/videos

- Cours d'ACP
 - https://www.youtube.com/watch?v=TAaAr9OM8rc&list=PLD5F63A877B376200
 - Utilisation de R

https://www.youtube.com/watch?v=1QPRsg3Bxok

IVIOLIVALION

L'Analyse en Composantes Principales (ACP) est la méthode de base en statistique exploratoire multidimensionnelle (ou analyse des données)

- Multidimensionnelle : l'analyse porte sur plusieurs variables
- Exploratoire : descriptive (par opposition à inférentielle)

Il s'agit de résumer l'information portant sur plusieurs variables en

- faisant émerger des liaisons entre variables
- formant des groupes d'individus se ressemblant

- En ACP les données se présentent dans un tableau X à n lignes et p colonnes où
 - chaque ligne représente un individu
 - chaque colonne représente une variable
- ullet Les variables sont quantitatives : la matrice X est constituée de valeurs numériques

X est une matrice $n \times p$ de valeurs numériques :

$$X = \begin{bmatrix} x_{11} & \dots & \dots & x_{1p} \\ x_{21} & \dots & \dots & x_{2p} \\ \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \vdots \\ x_{n1} & \dots & \dots & x_{np} \end{bmatrix}$$

Un individu est un élément de \mathbb{R}^p Le $i^{\text{ème}}$ individu :

$$X = \begin{bmatrix} x_{11} & \dots & \dots & x_{1p} \\ x_{21} & \dots & \dots & x_{2p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{ij} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n1} & \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

Une variable est un élément de \mathbb{R}^n La $j^{\text{ème}}$ variable :

$$X = \begin{bmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1p} \\ x_{21} & \dots & \dots & \dots & x_{2p} \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & x_{ij} & \dots & \dots \\ x_{n1} & \dots & \dots & x_{nj} & \dots & x_{np} \end{bmatrix}$$

000

- On dispose des p=12 températures mensuelles pour n=35villes Européennes
- Sont par ailleurs renseignées les variables
 - température moyenne annuelle
 - amplitude de température
 - latitude
 - longitude
 - région (qualitative à 4 modalités)

Données Températures

```
> don <- read.table("temperat.csv", sep=";",
+ dec=".",header=TRUE,row.names=1)
> dim(don)
[1] 35 17
> names(don)
[1] "Janvier" "Fevrier" "Mars" "Avril" "Mai" "Juin"
[7] "Juillet" "Aout" "Septembre" "Octobre" "Novembre"
[12] "Decembre"
[13] "Moyenne" "Amplitude" "Latitude" "Longitude" "Region"
> rownames(don)
[1] "Amsterdam" "Athenes" "Berlin" "Bruxelles"
[5] "Budapest" "Copenhague" "Dublin" "Helsinki"
[9] "Kiev" "Cracovie" "Lisbonne" "Londres"
[13] "Madrid" "Minsk" "Moscou" "Oslo"
[17] "Paris" "Prague" "Reykjavik" "Rome"
[21] "Sarajevo" "Sofia" "Stockholm" "Anvers"
[25] "Barcelone" "Bordeaux" "Edimbourg" "Francfort"
[29] "Geneve" "Genes" "Milan" "Palerme"
[33] "Seville" "St. Petersbourg" "Zurich"
```

0

•

- Nous ne considérons ici que les températures mensuelles (p=12)
- Les individus sont les villes
- Un individu est décrit par ses p=12 valeurs : c'est un élément de \mathbb{R}^{12}
- Les variables sont les températures mensuelles
- Une variable est décrite par ses valeurs sur les n = 35 individus
- Une variable est un élément de \mathbb{R}^{35}

Données centrées

Moyennes par colonnes :

00 •00

```
> apply(don[,1:12],FUN=mean,MARGIN=2)
```

Juillet Aout Septembre Octobre Novembre Decembre 19.622857 18.98000 15.631429 11.00285 6.065714 2.880000	Janvier 1.34571	Fevrier 2.21714	Mars 5.228571	Avril 9.28285	Mai 13.9114	Juin 17.414286
40 40						2.880000

Données centrées

Centrage des données :

• A Paris, la température en janvier est plus élevée que la moyenne, pas en août :

> don["Paris",1:12][c("Janvier","Aout")]-apply(don[,1:12],FUN=mean,MARGIN=2)[c("Janvier","Aout")]

Janvier Aout Paris 2.354286 -0.28

LCart-type

• On peut calculer l'écart-type pour chaque variable :

Il y a plus de variabilité de température en janvier qu'en mai :

> apply(don[,1:12],FUN=sd,MARGIN=2)[c("Janvier","Mai")]
Janvier Mai
5.502157 3.273582

Données centrées-réduites

Centrage puis réduction :

 A Reykjavik, la température en mai est beaucoup plus froide que la moyenne :

Objectifs

- Nous considérons X centrée-réduite (ACP normée)
- Le tableau X peut être analysé à travers ses lignes (les individus) ou à travers ses colonnes (les variables)
- ⇒ résumer l'information en gardant à l'esprit cette dualité

Objectifs

- Nous considérons X centrée-réduite (ACP normée)
- Le tableau X peut être analysé à travers ses lignes (les individus) ou à travers ses colonnes (les variables)
- ⇒ résumer l'information en gardant à l'esprit cette dualité
- Typologie des individus
 - Il existe une variabilité de températures entre les individus
 - ⇒ former des groupes d'individus semblables
 - Termes clé : ressemblance

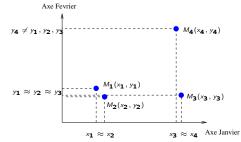
Objectifs

- Nous considérons X centrée-réduite (ACP normée)
- Le tableau X peut être analysé à travers ses lignes (les individus) ou à travers ses colonnes (les variables)
- ⇒ résumer l'information en gardant à l'esprit cette dualité
- Typologie des individus
 - Il existe une variabilité de températures entre les individus
 - ⇒ former des groupes d'individus semblables
 - Termes clé : ressemblance
- Typologie des variables
 - Il existe des variables liées entre elles
 - ⇒ former des groupes de variables liées
 - Termes clé : liaison corrélation

Nous considérons X centrée-réduite (ACP normée)

- Nous considerons X centree-reduite (ACI normee)
- Le tableau X peut être analysé à travers ses lignes (les individus) ou à travers ses colonnes (les variables)
- ullet \Rightarrow résumer l'information en gardant à l'esprit cette dualité
- Typologie des individus
 - Il existe une variabilité de températures entre les individus
 - ⇒ former des groupes d'individus semblables
 - Termes clé : ressemblance
- Typologie des variables
 - Il existe des variables liées entre elles
 - ullet \Rightarrow former des groupes de variables liées
 - Termes clé : liaison corrélation
- Dualité : Quelles (groupes de) variables expliquent le plus la variabilité inter-individus ?

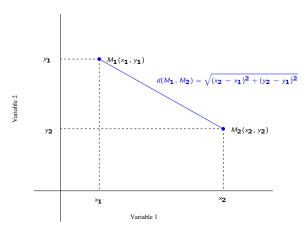
- Un individu (ville ligne) est un point de \mathbb{R}^p (espace à p dimensions)
- Nuage N_p des individus : nuage de n points dans \mathbb{R}^p
- La "Ville" moyenne est le centre de gravité G du nuage
- Analogie avec la géométrie de \mathbb{R}^2 , \mathbb{R}^3 Chaque axe est associé à une variable :



Information

- Identification des groupes de points proches
- Identification de points isolés
- \Rightarrow dans quelles directions (i.e sur quelles variables) ?
 - Identification de la forme du nuage
 - Des directions d'allongements en particulier
- ⇒ concept clé : distances entre points

Rappel : Distance dans \mathbb{R}^2



Distance dans \mathbb{R}^p

• Analogie pour calculer la distance entre points de \mathbb{R}^p :

$$X = \begin{bmatrix} x_{11} & . & . & . & . & . & x_{1p} \\ x_{21} & . & . & . & . & . & x_{2p} \\ x_{i1} & . & . & . & x_{ij} & . & x_{ip} \\ . & . & . & . & . & . & . \\ x_{l1} & . & . & . & x_{lj} & . & x_{lp} \\ . & . & . & . & . & . & . \\ x_{n1} & . & . & . & . & . & x_{np} \end{bmatrix}$$

• Distance entre individu i et individu l :

$$d^{2}(i, l) = \sum_{j=1}^{p} (x_{ij} - x_{lj})^{2}$$

"Distance" entre villes

• Amsterdam est plus proche de Paris que d'Athènes en terme de profil de températures :

```
> sum((don["Amsterdam",1:12]-don["Paris",1:12])^2)

[1] 21.89
> sum((don["Amsterdam",1:12]-don["Athenes",1:12])^2)

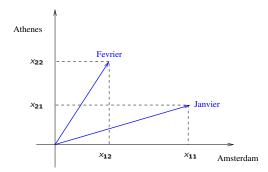
[1] 786.72
```

 Une quantification de l'information sur l'ensemble des distances : la somme (des carrés) des distances au centre de gravité :

$$\sum_{i=1}^{n} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{j})^{2}$$

Nuage N_n des variables : p vecteurs de \mathbb{R}^n

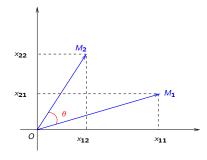
- Une variable (mois colonne) est ici considérée comme un vecteur de \mathbb{R}^n
- Nuage N_n des variables : p vecteurs dans \mathbb{R}^n
- Chaque axe est associé à un individu (ville) :



Rappel: Produit scalaire

- La norme d'un vecteur correspond à sa longueur
- Le produit scalaire de deux vecteurs prend en compte longueurs et l'angle qu'ils forment

$$\langle \overrightarrow{OM}_1, \overrightarrow{OM}_2 \rangle = \|\overrightarrow{OM}_1\| \times \|\overrightarrow{OM}_2\| \cos(\theta) = x_{11}x_{12} + x_{21}x_{22}$$



$$\overrightarrow{OM}_1 = \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}$$

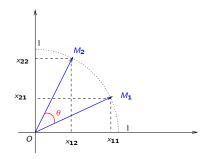
$$\overrightarrow{OM}_2 = \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix}$$

Norme:
$$\|\overrightarrow{OM}_1\| = \sqrt{x_{11}^2 + x_{21}^2}$$

Rappel: Produit scalaire

Pour des vecteurs de norme 1, la produit scalaire donne une mesure de l'angle (via le cos) :

$$\langle \overrightarrow{OM}_1, \overrightarrow{OM}_2 \rangle = \cos(\theta) = x_{11}x_{12} + x_{21}x_{22}$$



$$\overrightarrow{OM}_1 = \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}$$

$$\overrightarrow{OM}_2 = \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix}$$

Norme:
$$\|\overrightarrow{OM}_1\| = \|\overrightarrow{OM}_2\| = 1$$

Coefficient de corrélation

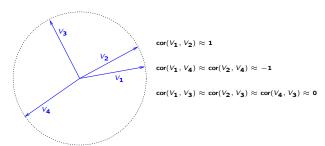
• Rappel (coefficient de) corrélation de 2 variables :

$$\mathbf{cor}(X_j, X_k) = \frac{1}{n} \sum_{i=1}^n \left(\frac{x_{ij} - \bar{x_j}}{\sigma_j} \right) \left(\frac{x_{ik} - \bar{x_k}}{\sigma_k} \right)$$

 C'est le produit scalaire des deux colonnes centrées-réduites associées (à 1/n près) :

$$X = \begin{bmatrix} \cdot & (x_{1k} - \bar{x}_k)/\sigma_k & \cdot & \leftrightarrow & \cdot & (x_{1j} - \bar{x}_j)/\sigma_j & \cdot \\ \cdot & \cdot & \cdot & \leftrightarrow & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \leftrightarrow & \cdot & \cdot & \cdot \\ \cdot & (x_{ik} - \bar{x}_k)/\sigma_k & \cdot & \leftrightarrow & \cdot & (x_{ij} - \bar{x}_j)/\sigma_j & \cdot \\ \cdot & \cdot & \cdot & \leftrightarrow & \cdot & \cdot & \cdot \\ \cdot & (x_{nk} - \bar{x}_k)/\sigma_k & \cdot & \leftrightarrow & \cdot & (x_{nj} - \bar{x}_j)/\sigma_j & \cdot \end{bmatrix}$$

- X centrée-réduite \Rightarrow les colonnes ont même norme (\equiv norme 1)
- Les p colonnes sont alors dans une (hyper)sphère (de rayon 1)
- L'angle formé par les vecteurs colonnes renseignent la corrélation sur les variables



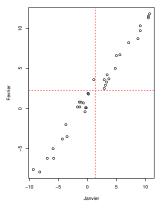
Interprétation

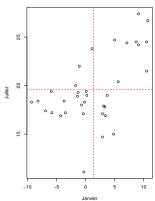
> cor(don[,1:12])["Janvier","Fevrier"]
[1] 0.9900015

[1] 0.9900015

> cor(don[,1:12])["Janvier","Juillet"]
[1] 0 5720172

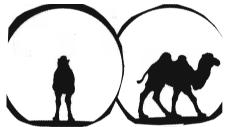
[1] 0.5739173





Vers une représentation simplifiée

Quelle est la meilleure projection ?



- La plus "grande" des deux
- ⇒ Séparer les points au maximum

Inertie

 L'inertie I des données est (à 1/n près) la somme des carrés des cellules de X centrée-réduite

$$I = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} \left(\frac{x_{ij} - \bar{x}_j}{\sigma_j} \right)^2$$

- C'est la somme (à 1/n près) des carrés des distances au centre de gravité pour tous les individus
- Quantification de l'information portée par les données
- ⇒ renseigne sur la "forme" du nuage des individus

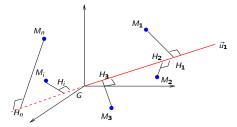
Décomposition de l'inertie

- Idée : construction d'une suite de p axes permettant de restituer la forme du nuage
- Construction itérative
- On en déduit des représentations planes simples à interpréter
- Principe de réduction de la dimension
- Basé sur la décomposition de l'inertie

Décomposition de l'inertie

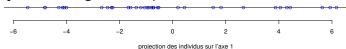
- ullet 1 $^{
 m er}$ axe : Axe principal de variabilité du nuage
- Direction de \mathbb{R}^p qui maximise l'inertie projetée :

On cherche \vec{u}_1 telle que $\sum_{i=1}^n GH_i^2$ maximum



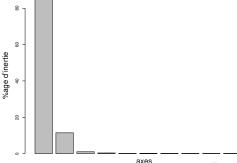
Décomposition de l'inertie

Projection orthogonale des points sur l'axe 1 :



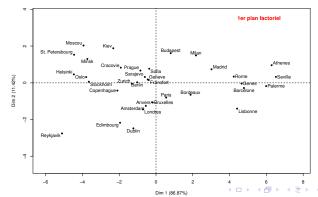
- On cherche ensuite un axe \vec{u}_2 , orthogonal à \vec{u}_1 , qui maximise l'inertie projetée
- C'est le second axe de variabilité du nuage
- Ce 2nd axe présente moins de variabilité que le précédent

- On itère le procédé en cherchant \vec{u}_3 orthogonal au plan \vec{u}_1, \vec{u}_2 qui maximise l'inertie projetée
- ..
- Jusqu'à obtenir p axes orthogonaux
- La part d'inertie projetée sur chaque axe donne la part de variabilité restituée :



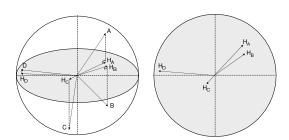
Plan factoriel

- On privilégie les représentations planes en projetant les individus sur les plans formés par les axes
- La projection orthogonale sur le plan formé par $\vec{u_1}$ et $\vec{u_2}$ est la meilleure représentation plane du nuage des individus
- Il concentre 98% de l'inertie

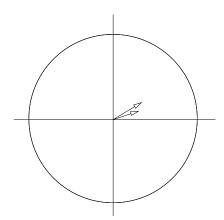


Cercle des corrélations

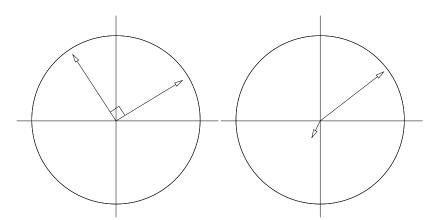
- Les axes factoriels sont
 - des combinaisons linéaires des colonnes de X
 - sont des vecteurs de \mathbb{R}^n
 - orthogonaux 2 à 2
- Les cercles de corrélations représentent les projections des colonnes de X sur les plans formés par ces axes



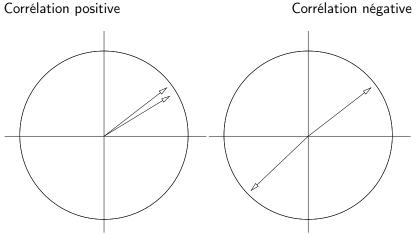
Aucune interprétation



Non corrélation

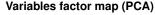


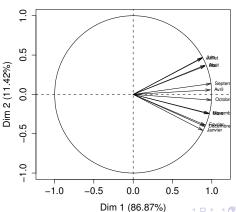
Corrélation positive



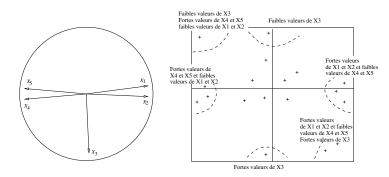
Exemple: effet taille

- Toutes les variables sont corrélées positivement : effet taille
- ullet \Rightarrow la plupart des villes sont ou chaudes ou froides toute l'année



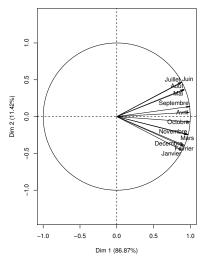


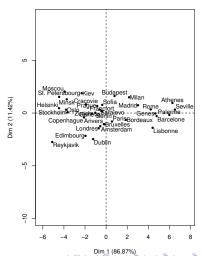
$Variables \rightarrow Individus$



Package FactoMineR

> library(FactoMineR)
> res.pca <- PCA(don[,1:12])</pre>





Données températures

- Le premier plan principal explique la (quasi)totalité de l'information : 98.25%. Inutile d'analyser d'autres axes
- Typologie des variables
 - Effet taille
 - Axe 2 : opposition été/hiver
- Typologie des individus
 - Villes chaudes toute l'année : Seville, Athènes,...
 - Villes froides toute l'année : Helsinki, St-Petersbourg...
 - Villes très froides l'hiver : Moscou, Kiev,...
 - Villes particulièrement fraiches l'été : Reykjavic, Edimbourg...

Individus supplémentaires (illustratifs)

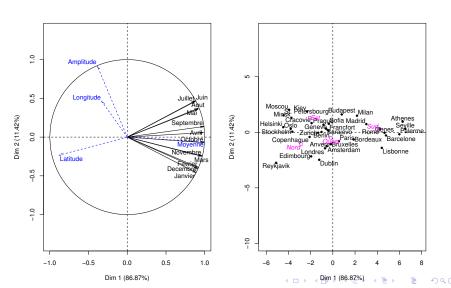
- Ils ne servent pas à calculer les axes
- Ils sont représentés (projetés) après
- Exemple : centre de gravité d'un groupe d'individus

```
> summary(don[,"Region"])
Est Nord Ouest Sud
8 8 9 10
```

- Elles ne servent pas à calculer les axes
- Elles sont représentées (projetées) après sur les cercles
- Exemples
 - variables résultant des autres (moyennes...)
 - variables aidant à l'interprétation
 - en régression pour voir l'effet de variables explicatives sur une variable à expliquer

```
> colnames(don)[-c(1:12,17)]
[1] "Moyenne" "Amplitude" "Latitude" "Longitude"
```

Exemple températures



Ajouts aux interprétations

- Le premier axe est très corrélé à la température moyenne
- La latitude est très corrélée au le premier axe qui sépare les villes chaudes (au sud) des villes froides (à l'est)
- L'amplitude corrélée au second axe de variabilité qui résulte d'une oppsition été/hiver : séparation des villes de fortes amplitudes (Moscou, St Petersbourg,..), des villes aux faibles amplitudes (Reykjavic, Edimbourg, Dublin,...)