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Abstract Multivariate nonparametric smoothers, such as
kernel based smoothers and thin plate splines smoothers,
are adversely impacted by the sparseness of data in high di-
mension, also known as the curse of dimensionality. Adap-
tive smoothers, that can exploit the underlying smoothness
of the regression function, may partially mitigate this ef-
fect. This paper presents a comparative simulation study of a
novel adaptive smoother (IBR) with competing multivariate
smoothers available as package or function within the R lan-
guage and environment for statistical computing. Compari-
son between the methods are made on simulated datasets of
moderate size, from 50 to 200 observations, with two, five
or 10 potential explanatory variables, and on a real dataset.
The results show that the good asymptotic properties of IBR
are complemented by a very good behavior on moderate
sized datasets, results which are similar to those obtained
with Duchon low rank splines.
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1 Introduction

In many applications, one seeks to explain a response vari-
able by a set of potential explanatory variables. Regression,
which is a fundamental data analysis tool, solves this prob-
lem by estimating the functional relationships between pairs
of observations (Xj, ¥;),i = 1,...,n. In its simplest form,
one models the conditional expectation of the dependent
variable Y given the independent variables X € R¢ by a
linear combination of the covariates and estimates the pa-
rameters by minimizing a suitable cost function between the
observed and the fitted values, usually the sum of squared
errors. More generally, one may explicitly specify paramet-
ric families for regression functions that describe the condi-
tional expectation of the dependent variable Y given X.

Nonparametric regression provides a more flexible model
that does not require the specification of a particular para-
metric form from the conditional expectation. Instead, it
only assumes that the conditional expectation of Y be a
smooth function of the covariates X . Typically, nonparamet-
ric models are estimated locally, and the predicted values are
smoother than the original observations. Hence nonparamet-
ric regression estimators are often called smoothers.

Over the past thirty years, numerous smoothers have been
proposed: running-mean smoother, running-line smoother,
bin smoother, kernel based smoother, splines regression
smoother, smoothing splines smoother, locally weighted
running-line smoother, just to mention a few. We refer to
Buja et al. (1989), Eubank (1988), Fan and Gijbels (1996),
and Hastie and Tibshirani (1995) for more in depth treat-
ments of regression smoothers. Most of these smoothers be-
havior is closely related to a good choice for the smoothing
parameter A and much has been written on how to select
an appropriate smoothing parameter (see for example Si-
monoff 1996). Classical smoothers have to face the curse
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of dimensionality which could be summarized as follows:
as the dimension of the data increases, so does the sparse-
ness of the covariates and as a consequence, nonparametric
smoothers must average over larger neighborhoods, which
in turn produces more heavily biased smoothers. Optimally
selecting the smoothing parameter does not alleviate this
problem and as a remedy, the common wisdom is to avoid
all together general nonparametric smoothing with moderate
sample size in dimensions higher than three. In this cases,
it is usual practice in the statistical community to fit struc-
turally constrained regression models such as additive mod-
els (Hastie and Tibshirani 1995; Wood 2004), MARS (Fried-
man 1991), projection pursuit models (Friedman and Stuet-
zle 1981) or additive L,-Boosting (Bithlmann and Yu 2003).

The popularity of additive models (or MARS models)
stems from its interpretability and from the fact that the es-
timated regression function converges to the best additive
approximation of the true regression function at the optimal
univariate mean squared error rate of n~ 2/ @+ where v
is the smoothing index (see for example Tsybakov 2009).
While additive models do not estimate the true underlying
regression function, one hopes that the approximation error
will be small enough so that for moderate sample sizes, the
prediction mean square error of the additive model is less
than the prediction error of a fully nonparametric regression
model.

The optimal mean square error rate of convergence de-
pends on both the dimension d of the covariates and the
smoothness of the unknown regression function, which is of
course unknown. It is well-known that for regression func-
tion m from R? to R known to belong to some smoothness
functional classes (e.g Holder, Sobolev, Besov), the opti-
mal mean squared error rate of convergence is n~2"/(2v+d),
Thus, if the regression function m is of smoothness index
v = 2d, then the optimal rate is n~*3, a value recognized as
the optimal mean squared error of estimates for twice differ-
entiable univariate regression functions. This suggests that
nonparametric regression in higher dimensions is practical,
provided that the true regression function is known to be suf-
ficiently smooth, and that the smoothing methods exploits
this knowledge.

While in practice, one rarely knows a priori the smooth-
ness of the regression function, there exists smoothers
achieving the optimal asymptotic mean square error with-
out prior specification of the smoothness. Such methods
are called adaptive, and we refer the interested reader to
Lepski (1991), Gyorfi et al. (2002), Tsybakov (2009) for
general discussions on adaptation in nonparametric estima-
tion. Roughly speaking, adaptation can be achieved either
by direct estimation (see for example Lepski’s method, Lep-
ski 1991, and related papers) or by aggregation of different
procedures (see Yang 2000). Even if potential gain can be
achieved by these nonparametric adaptive estimators, there
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is a lack of multivariate adaptive smoothers that work well
in practice with moderate sample size n (ranging from a
hundred to few thousands observations). Recently, Cornil-
lon et al. (2011b) proposed an adaptive iterative smooth-
ing method that is very promising for such datasets. The
method, called Iterative Bias Reduction (abbreviated to IBR
in this paper), starts out with a biased smoother that has
a large smoothing parameter A (ensuring that the data are
over-smoothed) and then proceeds to estimate and correct
the bias in an iterative fashion. This approach is attractive in
that it uses existing smoothers, yet by iteratively estimating
and correcting the bias, it achieves adaptation.

The aim of this paper is (1) to demonstrate, through sim-
ulations and applications to a real dataset, the good practi-
cal performance of IBR predicted by the asymptotic theory
in Cornillon et al. (2011b) for moderate sample sizes and
(2) to compare its performances to those obtained by var-
ious competitors. All these competitors must be usable for
end-user and thus must be included in some R packages.
This last consideration leads us to compare IBR to the fol-
lowing methods: additive models (R package mgcv), projec-
tion pursuit regression (R function ppr), MARS (R package
mda), additive L,-Boosting (R package mboost) and direct
multivariate regression modeling such as low rank thin-plate
splines or Duchon splines (R package mgev, Wood 2003).

The paper is organized as follows. Section 2 briefly in-
troduces the IBR smoother, discusses how to initiate and
stop the iterative procedure, and reviews its theoretical prop-
erties. Section 3 presents IBR with thin plate splines and
Duchon splines and discusses the choice of the initial val-
ues in order to obtain biased (pilot) smoothers. Section 4
assesses the finite sample properties of the IBR smoother by
comparing in simulations its performances with other mul-
tivariate smoothing methods that have end-user implemen-
tation. Section 5 discusses variable selection for nonpara-
metric smoothers, and show through simulations, improve-
ments in the prediction mean squared error. Section 6 ap-
plies variable selection for the IBR smoother to the Los An-
geles Ozone dataset and concluding remarks end the paper.

2 IBR: iterative bias reduction
2.1 Preliminaries: linear smoother

Suppose that the pairs (X;, ¥;) € R? x R are related through
the nonparametric regression model

Yi=mX;)+e&, i=1,...,n, (D

where m(-) is an unknown smooth function and the dis-
turbances &; are independent mean zero and variance o>
random variables that are independent of all the covariates
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(X1, ..., Xyn). It is helpful to rewrite equation (1) in vec-
tor form by setting ¥ = (Y1,...,Y,)", m = m(Xy),...,
m(X,)) and € = (g1, ..., &,)", to get

Y=m+e. )
Linear smoothers can be written in vector format as
my =387, 3)

where S; is an n x n smoothing matrix depending on a
smoothing parameter and /1, = Y=({,...,Y,) denotes
the vector of fitted values. The conditional bias of such a
linear smoother is

B(my) =E[m|X] —m = (S; — Dm. 4
2.2 Bias reduction of linear smoothers

The expression (4) for the bias suggests that it can be esti-
mated by smoothing the negative residuals —R; = — (Y —
m1)=—( — 81)Y. That s,

bi:=—$R ==S(I - S)Y )
estimates the bias using a (possibly) different smoother S;.
Correcting the pilot smoother 712 by subtracting b; yields a
bias corrected smoother

my=81Y + $2(I — SNY = (S1 + S2(I — S)))Y.

Since m; is itself a linear smoother, it is possible to correct
its bias as well. Repeating the bias reduction step k — 1 times
produces the linear smoother given in the following propo-
sition. We have to keep in mind that in order to reduce the
bias, we need a biased initial smoother. Moreover, at each
iteration, reducing the bias is done at the cost of increasing
the variance. A natural question is how to stop algorithm
(c.f. Sect. 2.4).

Proposition 1 (Residual smoothing estimator) After k — 1
iterations, the bias corrected estimator can be explicitly
written as
my=81Y + S —8)Y +---
+Sc( — Sk—1)--- (I = SDY
=[1—-U—-S)U—S-1)---—SD]Y. (6)

An alternative approach is to estimate the bias by plug-
ging in an estimator m = S;Y for the regression function m
into the expression of the bias (4). This produces the estima-
tor

b =S —DSY

for the bias.

Proposition 2 (Plug-in estimator) After k — 1 iterations,
plug-in bias estimator can be explicitly written as

mg=81Y + (I =S)SHY +---+ U —S)T =)+ SY
=[I-U=SDU—-S%)...( - Sp]Y. 7

While in general, these two estimates for the bias lead to
distinct bias corrected smoothers (6) and (7), they are iden-
tical when the same smoothing matrix is used at every step
of the procedure.

Proposition 3 (Iterating the same smoothing matrix) Tak-
ing S=381 =8, =---= Sk, both the plug-in estimator and
the residual smoothing estimator agree and the k'" iterated
bias corrected smoother can be written as

=1 — I - S*]r. ®)

This closed form shows that the qualitative behavior of
the sequence of iterative bias corrected smoothers 71y is gov-
erned by the spectrum of 7 — S (see Cornillon et al. 2011b).
If the eigenvalues A; of I — S are in [0, 1] then as k tends
to infinity, the bias converges to 0 and the variance increases
to no2.

In the univariate case, smoothers of the form (8) arise
from the L»-boosting algorithm with a symmetric base
smoother S and a convergence factor p equal to one (see
Friedman 2001, for a definition of this factor). Thus we can
interpret the L;-boosting algorithm as an iterative bias re-
duction procedure in this special case. From a historical per-
spective, the idea of estimating the bias from residuals to
correct a pilot estimator of a regression function goes back
to the concept of twicing introduced by Tukey (1977) to es-
timate the bias of misspecified multivariate regression mod-
els. The idea of iterative debiasing regression smoothers is
also present in Breiman (1999) in the context of the bag-
ging algorithm. More recently, the interpretation of the L;-
boosting algorithm as an iterative bias correction scheme
was alluded to in Ridgeway’s discussion of the paper on
the statistical interpretation of boosting of Friedman et al.
(2000). Biihlmann and Yu (2003) present the statistical prop-
erties of the L,-boosted univariate smoothing splines, while
Di Marzio and Taylor (2008) describe the behavior of uni-
variate kernel smoothers after a single bias-correction itera-
tion.

2.3 Prediction with smoothers

The linear smoother defined by (3) predicts the conditional
expectation of responses only at the design points. It is use-
ful to extend regression smoothers to enable predictions at
arbitrary locations x € R? of the covariates. Such an exten-
sion allows us to assess and compare the quality of various
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smoothers by how well the smoother predicts new observa-
tions.

To this end, write the prediction of the linear smoother S
at an arbitrary location x as

mx)=Sx)'Y,

where S(x) is a vector column of size n whose entries are
the weights for predicting m(x). The vector S(x) is readily
computed for many of the smoothers used in practice. For
example, for a kernel smoother (with a bandwidth #4), one
readily obtains that

1
Y K (A

(52 (52

We want to find a similar equation for the IBR smoother
m. Writing the latter smoother as

Sx) =

”7k=n70+/b\1+...+j;k
:S[I+(I—S)+(1—S)2+..._|_(1_S)k—l]Y
=SBt

it follows that we can predict m(x) by

ik (x) = S(x)' Br.
with B =[1+ (I =)+ = S+ -+ = .

The sequence of parameters /’é\k can be computed recursively
by

Be=Y+ = S)Bi-1.
2.4 Stopping rules

As we can see from Eq. (8), the qualitative behavior of the
iterated estimator is governed by the spectrum of I — S.
For splines smoothers and kernel smoothers with a posi-
tive define kernel, the spectrum lies in the unit interval [0, 1]
(Cornillon et al. 2011b). The package ibr (Cornillon et al.
2011a) is implemented with these types of smoothers. It fol-
lows from Eq. (8) that as the number of iterations k goes to
infinity, the sequence of iterated smoothers 71, tends to re-
produce the raw data Y. Thus iterating the algorithm until
convergence is not desirable. However, since each iteration
reduces the bias and increases the variance, often a few iter-
ations of the algorithm will produce a better smoother than
the pilot smoother. This brings up the important question of
how to decide when to stop the iterative bias correction pro-
cess.
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Viewing the latter question as a model selection problem
suggests stopping rules based on Akaike Information Crite-
rion, AIC (Akaike 1973), modified AIC criterion (Hurvich
et al. 1998), Bayesian Information Criterion, BIC (Schwarz
1978), and Generalized Cross Validation, GCV (Craven and
Wahba 1979). These selectors, all implemented in the ibr
package, can be written in a common form

argmin{log i + @ (tr(Sp)) |,
kelC

where 632 = %H Y — ||, (|||l is the usual Euclidean norm)
and

S,
Darc(tr(Sp)) = 2tr(nk)’
Bic(tr(Sp)) = logntr(Sk)
B tr(Sk) + 1
Parce (tr(S) =1+ Zm’

Pgev (tr(Sx)) = —2log (1 - tr(:k))-

We are interested in choosing the best selector for the num-
ber of iterations k among the above listed procedures. It is
instructive to observe how each of these criteria behave over
the entire range of k, from zero to infinity. When the num-
ber of iterations k tends to infinity, tr(S;) converges to n.
This means that we are almost interpolating the data, which
implies that the residual sum of square, and hence 6y, tends
to zero. Thus for splines and kernel smoothers with positive
definite kernels, the ratio tr(Sx)/n increases monotonically
to one and the estimated variance decreases to zero with a
growing number of iterations k.

Figure 1 shows the different qualitative behavior of the
penalization term @. Both the AIC and BIC penalties are
linear in tr(Sk)/n, and reach 2 and logn, respectively, at
tr(Sx) = n. For problem with large o2, the AIC and BIC
criteria will select the large number of iterations &, produc-
ing smoothers that nearly interpolate the data, which defeats
the purpose of smoothing. This behavior is consistent with
the general experience in nonparametric smoothing, where
it is well-known that AIC criterion has a noticeable tendency
to select smoothing parameters that are smaller than needed.
As this leads to undersmooth the data, Hurvich et al. (1998)
introduced a corrected version of the AIC (AICc) under the
simplifying assumption that the nonparametric smoother
is unbiased. This assumption is problematic in our context,
as IBR deliberately starts out with a very biased estimate.
For these reasons, and because of the asymptotic results
given in Theorem 2 in Cornillon et al. (2011b), we advo-
cate using GCV as the default stopping rule and use it in our
simulations.
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3 IBR with splines or kernels

Before discussing about initial values for IBR, let us present
some IBR base smoothers S: thin-plate splines (TPS),
Duchon splines and Gaussian kernel.

3.1 Thin plate splines

Suppose the unknown function m from R? — R belongs to
the Sobolev space H™) (£2) = H"), where v is an unknown
integer such that v > d/2 and §2 is an open bounded subset
of R?. Recall that thin plate splines (TPS) arise as the solu-
tion of the following minimization problem on ) (see Gu
2002; Wood 2003)

1
Y= x|+ 2,
where

d . v!
J‘)(f)— Z al!...adV

o +-tog=v

2
dx1-~-dxd.
/ /(Z)x . Bxgd>

The first part of the functional to be minimized controls
the data fitting while the second part, Jf( f), controls the
smoothness. The trade-off between these two opposite goals
is ensured by the choice of the smoothing parameter A. The
null space of J‘f’ (f) consists of polynomials with maxi-
mum degree of (v — 1). This subspace is of finite dimension
M = ("T47"). Let us denote {¢1(.), ..., pu ()} a basis of
this subspace. If A is known (and prov1ded v > d/2 to en-
sure a continuous solution) the solution of the minimization
problem is a TPS which has the following form:

M n
gr) = ajj(x)+ Yy simd(Ix — Xil)

j=1 i=1
where ||.|| denotes the usual Euclidean norm. The vector § €
R" of coefficients is subject to the constraint 7§ = 0 with

the matrix T defined as T;; = ¢;(X;). Furthermore we have
(where o denotes proportional to):

r?>*~4log(r) d even,

d
LR d odd.

To determine the vectors of coefficients « and §, and thus
the TPS solution, a closed form solution exists (see, for in-
stance, Gu 2002). The TPS smoother can also be written as a
linear smoother S, Y where the dependency on d and v is not
written explicitly. Usually A is unknown and has to be esti-
mated from the data. Usual (classical) procedure is to mini-
mize GCV criterion to determine an optimal X that ensures
the trade-off between smoothness and fitting. Moreover the
order v, which depends on unknown m(.), is unknown and
the classical approach is to choose an integer vy without ex-
plicit statistical method to rely on. Usually it is chosen as the
smallest integer value such as vy > d /2.

3.2 IBR with TPS

The approach proposed here is completely different: we de-
liberately choose a large A (which is very easy) to ensure a
very biased smoother. We choose vy (as usual) the smallest
integer value such as vy > d /2. But if the pilot estimator S
is a thin plate estimator of order vy < v, then there exists
an optimal number of iterations k; such that the resulting
smoother 71 satisfies (Theorems 1 and 2 in Cornillon et al.
2011b)

1y 2
E[(; ;(mk;(x,) - m(Xj))) } = 0(n~ /D),
While this existence theorem does not provide any practical
guidance for finding the optimal number of iterations &, it
can be used in conjunction with Li (1987) to prove optimal-
ity of GCV stopping rule (see Cornillon et al. 2011b). Thus,
IBR ensures adaptivity: we do not know the true v but if
we choose a vy as usual we are sure to get the optimal rate
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of convergence and the optimal number of iterations with
GCV. Recall that the classical TPS does not ensure adaptiv-
ity. Moreover the choice of starting point for A and the min-
imization procedure is greatly simplified in IBR framework
compared to the classical TPS. Currently, the optimality of
GCV have only been proven for TPS smoothers, although
our simulations strongly suggest that a similar result must
hold for kernel based smoothers.

3.3 IBR with Duchon splines

It is well-known that beside computational problems, TPS
suffer from the fact that the dimension My of the null space
of J;f)(.) increases exponentially with d due to the condi-
tion vg > d/2. In his seminal paper Duchon (1977) presents
a mathematical framework that extends TPS. Noting that
the Fourier transform is isometric the smoothness penalty
J‘ff) (f) can be replaced by its squared norm in Fourier space,
that is,

/” DY £(1) ”zdt can be replaced by

[17@" e ar.

In order to solve the problem of exponential growth of the
dimension of the null space of Jﬁé(.), and to get new inter-
polation methods, Duchon introduced a weighting function
to define a new smoothness penalty:

J,ff)’s(f) = / IT]* H]—"(D""f)(t)“zdt.

The solution of the new variational problem:

1
~¥i = £ X))+ 2IE ().
n

is

My n
g) =Y a;p;jx)+ Y sind (Ix — Xill),

j=1 i=1
provided that vo + s > d/2 and s < d/2. The {¢;(x)} are
still a basis of the subspace spanned by polynomial of degree
vo — 1. We also have that:

F2vo+2s—d log(r) dif 2vo+2s —d is even,

d
nvo,s(r) B r2u0+2s—d

d otherwise
still with the same constraint on coefficients: 78 = 0.

For the special case s = 0, the Duchon splines reduces to
the TPS. But if one wants to have a lower dimension for the
null space of JUdM, for instance a pseudo-cubic splines with
an order vg = 2, one can choose (as suggested by Duchon
1977) s = 451

The same problem of the determination of A exists for
Duchon splines. It can be solved by using A which optimizes
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the GCV criterion. This classical framework is implemented
in the R package mgcv. In some circumstances (depending
on the sample size n, on the dimension d, on the design, on
m the unknown regression function and on the error distri-
bution) mgcev optimization procedure fails and the user has
to use low rank splines (see details in Wood 2003). To our
knowledge, no data-driven method in mgcyv is proposed to
help the user in the choice of a sensible rank, but the mgev
methods are rather insensitive to this choice.

Obviously, as Duchon splines solution are of the same
form as TPS, IBR method with Duchon splines base
smoother can be used to circumvent the problem of TPS
in high dimension. No choice of rank is needed and the op-
timization procedure to get an optimal number of iterations
is straightforward.

3.4 Initial values of IBR

As discussed previously, the IBR method relies on the
choice of a pilot smoother that over-smooths the data. In
this section we discuss the choice of the smoothness of the
pilot S. Our discussion in the section distinguishes splines
(thin-plate or Duchon) based smoother and kernel based
smoothers.

Splines smoothers depend on a regularization constant
that pre-multiplies the roughness penalty. Qualitatively,
“large” values of X lead to over-smoothing the data whereas
“small” values of A produce under-smooth of the data. What
value to take for large and small depend on the design, and it
is difficult to define a range of value for A that over-smooth
every dataset without considering the data. Instead of focus-
ing on selecting X, every smoothing package (with splines
smoother) defines and uses an equivalent degree of freedom
(edf), taken to be the trace of the smoothing matrix, that is
loosely interpreted as the number of independent parameters
needed to represent the smoother.

Consider S the smoothing matrix of a splines smoother.
The first M eigen-values are equal to one (corresponding of
the null space of Jlffm (f)) and the other eigen-values are all
positive and depend on the value of the smoothing parame-
ter A. Hence

tr(S) = edf = My + function(}).

As the end-user may not readily know the value of M, the
requested argument df in ibr is not the edf itself, but a
multiplicative coefficient applied to My to get the edf, i.e.,
edf = My x df. Thus df should be chosen greater than 1 to
ensure that edf > M.

Let us give an example: suppose d = 5.

o If the user wants to use TPS (s = 0), to ensure continuity,
the package requires that at least vp = |d/2] + 1 =3 and
My = (”%‘gi;l) = 21. If df is chosen equal to 1.1, the
initial TPS of order vy will use a smoothing parameter A
whose trace equals 23.1.
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e If the user wants to use Duchon splines, the package
will set as default value the pseudo-cubic splines set-
ting: vp =2 and s = (d — 1)/2 = 2. This setting leads to
My = 6. If df is chosen equal to 1.1, the initial Duchon
splines of order 2 will use a smoothing parameter A whose
trace equals 6.6. Duchon base smoother is obviously more
smooth than the TPS base smoother.

As an aside, starting with different df values leads to the
same solution. Therefore we only report the results with
df =1.001.

For TPS, the dimension of the null space of the smooth-
ness penalty My grows exponentially with the number of
covariates d for continuous thin plate splines. As a result,
these smoothers may not be able to over-smooth the data
even in moderate dimensions d. For example, if d = 8 then
the minimal value for My = 792, and it is obvious that in
such a case, one needs to have a larger number of observa-
tions (at least n = 792) to simply be able to compute the
smoother. Thus, to have the very smooth pilot required by
our method, several thousands of data may be needed and
this kind of large datasets is beyond the scope of our pa-
per. This difficulty does not arise with the Duchon splines or
kernel smoothers.

3.5 IBR with kernel smoother

Kernel smoothers do not suffer this kind of limitations and
can be used with various (moderate) dimension d. In gen-
eral, multivariate kernel smoothers are governed by a vec-
tor of bandwidth, one bandwidth for each explanatory vari-
able. We recall the reader that we do not seek to select an
“optimal” bandwidth, just some reasonable one that guaran-
tees that the initial smoother over-smooths the data. As for
smoothing splines, our implementation abstracts the particu-
lars of the smoothing parameter (in this case the bandwidth)
in favor of the edf. We can get a reasonable pilot smoother
by using a single bandwidth on each variable if we standard-
ize the data. Our experience suggests that we obtain better
results by selecting a bandwidth that makes each one dimen-
sional smoother (in each variable) having the same small
effective degree of freedom, which is the df argument. Val-
ues of Af we found to work well in our examples are 1.05
and 1.1.

4 Simulations

In this section, we present some of the results by applying
our bias reduction procedure to simulated data sets and com-
pare the results with various competing procedures imple-
mented in R. Our comparisons vary the sample sizes (n =
50, 100 and 200), the pilot smoothers, the noise over sig-
nal ratio, the type of errors and consider various functions in

R?, R and R'%. Let us expose the settings (all the codes are
available on the authors’ webpages).

4.1 Settings
4.1.1 Errors distribution

The distribution of errors ¢ is Gaussian and its variance is
chosen such that the noise over signal ratio (var(e)/var(m))
i85 %, 10 % and 20 %. Each sample of the explanatory vari-
ables X; (1 < j <d) is drawn uniformly and independently
on [0, 1].

4.1.2 Evaluations

Usually, in simulation studies, it is possible to evaluate the
error between the true function and the estimator on a grid.
Evaluating the error on such a grid in dimension 1 or 2 is
easy but it becomes computationally intensive in dimension
5 or 10. For example in dimension 5, a regular grid with 10
points in each direction requires 107 points to evaluate the
error. Therefore, we propose two measures of the error: the
classical Mean Square Error (MSE) and the Mean Square
Prediction Error (MSPE). We choose randomly 10 % of the
data in the sample (excluding the extreme points in each di-
rection) and denote this test set 7. The remaining 90 % of
the data (denoted £) is used to estimate m. The MSE is cal-
culated as follows:

1 . 2
MSE = — Z(m(xj) —m(X;))".
I£] 4
jeL
We compute the MSPE on the remaining 10 % (the test set
denoted by 7):

1 .
MSPE = 3 () — m(X ).
jeT
This measure gives an insight on the behavior of the
smoothers between data points as the distance between data
points increases with the dimension d.

4.1.3 Competitors

We use for kernel smoother different values of df argument,
but only one df argument for TPS smoother and Duchon
smoother (see Sect. 3.4). We compare with smoothers hav-
ing an R package available: linear models, MARS algo-
rithm of Friedman (1991) as implemented in the R package
mda, projection pursuit regression using the R function ppr
where the number of components is chosen by data split-
ting, additive models instantiated in the R package mgcv,
low rank Duchon splines and classical TPS as implemented
in mgcev, additive Boosting Bithlmann and Yu (2003) from
mboost, and regression trees Breiman et al. (1984) found in
the R package rpart.
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4.1.4 Replicates

We replicate every setting 500 times. However, for iterative
smoothing procedures such as IBR, GAM, or maximization
procedures such as those based on the choice of an opti-
mal A by GCV (low rank TPS, Duchon splines in mgev),
it could happen (hopefully in a small number of cases) that
the proposed estimator is not well conditioned and huge er-
rors can occur. Such problem could easily be fixed by ana-
lyzing the results one by one. However, since we are com-
puting hundreds and hundreds of runs, this is impossible
so we decide to exclude for each method its 5 % poorest
runs. Therefore all the results are computed with 475 repli-
cations.

4.1.5 Results

For each method, we calculate the mean and the standard
deviation of the 475 mean square prediction errors. To help
with the comparison of the different methods, we divide
each value by the smallest one among all the methods which
we interpret as a relative efficiency of a method against the
best method: this gives the value one to the most efficient
method. In almost all the simulations, the method having
the smallest error considering the mean has also the small-
est variance.

As the level of noise is increasing, the difference between
smoothers are decreasing, so we only present the 10 %
case. According to our simulations, ranking among MSE or
MSPE are relatively the same, so we only present MSPE
tables but will have discussions on the difference between
MSE and MSPE for a limited number of smoothers.

4.2 Dimension two

In dimension two, we consider one additive function m and
three functions with interaction. All the results are given in
Table 1 for MSPE.

mi(x1,x2) = 10(x; — 0.5)% + 5Sexp(—(x2 — 0.3)%/0.09)
(additive),
mo(x1, xp) = 1()x12 + exp(2x2){x1 < 0.5} 4+ exp(2x2)
(not smooth),
m3(xy, x3) = 10x1x§ +2
(pure interaction),
exp(8(x; — 0.5)% + (x2 — 0.5)%)

exp(8((x1 —0.2)2 + (x2 — 0.7)2))
(complex interaction).

my(x1, x2) =40

As expected, GAM modeling (mgcv) and gamboost have
the lowest MSPE for the additive function with a slight ad-
vantage for mgev package. True nonparametric multivariate
modeling such as MARS, IBR, low rank TPS or Duchon

splines (mgcv) give similar results which are not that far
from GAM.

For the other functions, IBR with TPS or Duchon splines
are performing as good as low rank TPS or Duchon splines
using mgev package, and these 5 competitors are perform-
ing much better than structural ones. Notice that modifying
the argument df can lead to very small improvement for
kernel pilot smoother. This suggests that IBR is robust to
the choice of df.

4.3 Dimension five
In dimension five, we decide to use an additive function with

an interaction, a single index function, a three index func-
tion and a function with interactions:

mi(xi, ..., xs) = 10sin(xix2) 4+ 20(x3 — 0.5)% + 10x4 + 5xs,
(2(x1 — 0.5) — 2(x2 — 0.5) +2(x3 — 0.5) + x4 + x5 — 1)?
ma(x1,...,x5) = 10exp 5 )
(x1 4+ 2x4) <7T X3 +2x5>
m3(xy,...,x5) =3———— —22cos| ———
V5 5
(2(x1 —0.5) — 2(x2 — 0.5) + 2(x3 — 0.5) + x4 + x5 — 1)?
+ 10exp ,
5

mg(xy,...,xs5) =68in(wx|x2) + 10005( (x% +x§)) + 10x4x5.

Results of simulations are summarized in Table 2.
As in dimension 2, IBR (kernel and splines), mgev low
rank TPS and Duchon Splines globally outperform the other
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smoothers. As expected, it can be noticed that the relative
difference is increasing with n but decreasing with d. But it
comes as a relative surprise that even for moderate sample
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Table 1 Dimension 2: ratio of the mean and variance of the MSPE over 475 simulations divided for all the competitors by the smallest value

(mean or variance)

R packages stats rpart stats mda mgcev mboost ibr mgcev
d=2 n par tree ppr mars gam gamb K1.05 K1.1 S DS ds tps
mi 50 me 19 12 4.6 1.9 1 1 23 2 2 1.8 1.8 2

sd 16 11 5.7 1.8 1 1 2.7 24 2.3 2 2 23

100 me 40 16 6.3 1.7 1 1.1 2.6 2.3 2 1.7 1.9 22

sd 27 12 11 1.4 1 1 2.9 2.3 2 1.7 1.7 2
200 me 73 23 5.7 1.8 1 1 24 2.5 1.9 1.7 1.9 2.5
sd 44 16 17 1.6 1 1 24 2.5 1.7 1.5 1.7 2.1
my 50 me 3.2 5 2.4 1.9 1.8 1.9 1.4 1.5 1 1.1 1 1
sd 2.4 3.5 2.2 1.4 1.4 1.4 1.3 1.5 1 1.1 1 1
100 me 4.5 4.2 3.1 2.5 2.2 23 1.5 1.5 1 1.1 1.1 1
sd 2.6 2.5 2.4 1.5 1.4 1.4 1.3 14 1 1.1 1.1 1
200 me 5.8 4.2 3 2.9 2.6 2.7 1.4 14 1 1.1 1.1 1
sd 3.1 2.4 2.1 1.6 1.3 1.4 1.2 1.3 1 1.1 1 1
m3 50 me 9.7 21 1.9 10 9 9.2 1.1 1.1 1.2 1.1 1 1.2
sd 7.8 22 1.6 8.5 7.9 8.8 1.2 1.2 1.3 1.1 1 1.2
100 me 20 22 3.1 19 18 19 1 1 1.5 1.2 1.1 1.5
sd 15 20 29 15 14 16 1.1 1.1 1.4 1.2 1 1.3
200 me 43 26 3.7 39 37 38 1 1 1.7 1.3 1.3 1.9
sd 25 20 32 24 22 24 1 1.1 1.3 1.1 1 1.4
my 50 me 7.2 9.6 2.6 5.8 5 4.9 1.2 1.2 1.1 1.1 1 1.1
sd 6.8 11 2.9 5.7 5.1 5.2 1.2 14 1.1 1 1 1.2
100 me 15 12 4.4 9.5 9 8.8 1 1.1 1.2 1.1 1 1.1
sd 14 16 5.3 9.1 8.6 8.8 1 1.1 1.1 1 1 1.1
200 me 29 11 6.9 19 18 18 1 1.1 1.4 1.2 1.2 14
sd 25 12 8 16 16 16 1 1.1 1.3 1.1 1.2 1.3

size (n = 50 that is |£]| = 45 in learning set) the approxima-
tion error of GAM modeling can’t be balanced by its low
estimation error (compared to fully nonparametric model-
ing).

However, for the first function, which is nearly additive,
GAM performs better than IBR for small sample size (n =
50 and n = 100). As n increases, IBR kernel performs better.
One can think when 7 is sufficiently big, IBR kernel yields
a better estimation of the slight interaction than the other
smoothing procedures.

Roughly speaking the performances of IBR Duchon
Splines or low rank mgev Duchon Splines are similar. In
Table 2, IBR appears to have a slight advantage but this
slight advantage is due to the universal choice of the rank
for the low rank Duchon Splines (arbitrarily chosen equal
to n/3). A manual investigation shows that fine-tuning this
choice of rank can lead to an advantage of low rank mgev
Duchon Splines over IBR Duchon Splines on MSE at the
cost of increasing the MSPE. These two methods remain al-
ways in the same range and advantage will differ with the
noise level, the rank or the type of function m(.). Obviously,

a good choice of rank in low rank smoothing splines can lead
to improvement but this is beyond the scope of this paper.
Again, the IBR procedure is robust to the choice of initial
df in dimension five.

All these phenomena can also be observed with the MSE
instead of MSPE. Moreover, when the noise level increases
the differences between IBR and mgev Duchon splines van-
ish. The complete results are available on the authors’ web-
page.

As a conclusion, in dimension two or five, without infor-
mation on the structure of the regression function, one could
advocate the use of IBR or low rank Duchon splines using
mgcv package. Moreover, one can think that the distance be-
tween IBR (or low rank Duchon splines) and GAM gives an
idea of the additivity of the function m(.).

4.4 Dimension 10
Let us consider the same functions as in dimension five

and just add five superfluous explanatory variables which
are pure noise. Results are summarized in Table 3. The
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Table 2 Dimension 5: ratio of the mean and variance of the MSPE over 475 simulations divided for all the competitors by the smallest value

(mean or variance)

R packages stats rpart stats mda mgcev mboost ibr mgcev
d=5 n par tree ppr mars gam gamb K1.05 K1.1 S DS ds tps
mi 50 me 2.1 6.3 2.8 1.6 1 1.6 1.4 1.3 1.7 1.3 1.8 -

sd 1.9 4.9 2.7 1.6 1 1.4 1.6 1.4 22 1.3 1.8 -

100 me 2.8 6.2 34 1.4 1 1.3 1 1 1.1 1 1.2 29

sd 2.3 4.6 3.1 1.3 1 1.1 1.2 1.2 1.2 1.1 1.3 4

200 me 5.4 9.9 4.9 2.3 1.9 2.1 1 1 1.3 1.1 1.2 1.3

sd 4.5 7.3 5.1 2 1.7 1.7 1 1 1.3 1.1 1.2 1.3
my 50 me 5.4 6.1 22 5.5 5.9 4.6 1 1 1.1 1.1 1.8 -
sd 5.2 5.5 2.8 5.2 53 4.7 1 1 1.1 1 1.7 -

100 me 8.4 9.2 1.9 8.9 8.2 7.7 1.2 1.1 1 1.2 1.2 4.8

sd 8.3 7.7 2.7 7.9 7.4 7.5 1.3 1.2 1 1.3 1.4 44

200 me 12 12 1.5 12 11 11 1.4 14 1 1.3 1.3 2.1

sd 11 9 22 9.6 9.3 9.6 1.3 1.3 1 14 1.5 1.7
m3 50 me 5.1 6 2.6 5.7 5.5 4.8 1 1 1.1 1 1.7 -
sd 5.1 52 2.8 5 53 4.7 1 1 1.1 1 1.6 -

100 me 8.2 9.6 22 9.2 8 7.9 1.2 1.1 1 1.2 1.2 5

sd 8.3 7.9 2.5 7.9 7.4 7.7 13 1.2 1 1.3 1.4 4.6

200 me 12 13 1.6 12 11 11 14 1.4 1 1.3 1.3 2.1

sd 11 9.5 22 9.5 9.3 9.6 13 1.3 1 14 1.5 1.6
my 50 me 2 5.9 2.5 2.1 1.6 2.1 1.2 1.2 1.5 1 1.1 -
sd 1.7 4.7 22 1.9 1.4 1.9 1.3 1.2 1.9 1 1.2 -

100 me 3 6.9 3.6 2.5 2.2 2.4 1.1 1.1 1.1 1 1.1 3

sd 2.3 4.9 32 2 1.7 1.7 1.1 1.1 1.1 1 1.1 38

200 me 5.6 10 5 4.3 39 4 1 1 1.3 1.1 1.1 1.3

sd 4.2 7.7 5 2.9 2.7 2.8 1 1 1.3 1.1 1.2 14

minimum effective degree of freedom for thin plate splines
smoother will be My = 6188 which is far greater than the
number of observations n. Thus thin plate splines smoother
cannot be used in dimension 10.

Recall that we have 10 variables with only five active
variables and five vacuous variables. This fact is unknown
to the users. We construct an initial smoothing matrix using
the 10 variables and iterate. So at each step of the algorithm
all the variables (even the superfluous ones) are used. The
results are not that different than those obtained in the pre-
vious section.

The main conclusion of that section is that the non-
parametric methods (IBR and mgev Duchon Splines) gives
(i) similar results as GAM modeling (mgcv package) for
nearly additive function (ii) much better results than GAM
for non-additive function, even for very small sample in
moderate dimension. This fact comes as a surprise as the
common wisdom is to advocate structural modeling with a
small sample sizes and moderate dimension.

Nonparametric methods appear relatively robust to the
possible addition of pure noise variables to the set of ex-
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planatory variables. However, potential gains could be ob-
tained if the initial smoothing matrix only contains the vari-
ables of interest or at least the variables of interest plus a
limited number of unrelated variables.

5 Nonparametric smoothing with variable selection

The IBR method starts with a pilot smoother S for all
the explanatory variables X1, ..., X4, and then iterates that
smoother. But if some explanatory variables are not related
to Y, it seems intuitively clear that excluding them should
improve the predictive capability of the smoother. This sug-
gests that variable selection may be beneficial. For computa-
tional reasons, we advocate using ascendent variable selec-
tion to construct more parsimonious multivariate smoothers.

To proceed with this variable selection procedure, we
need to choose a criterion. Classical criterion for variable se-
lection in linear models are AIC or BIC. The GCV criterion,
which is well suited for splines smoothing, is also available.
For example, let us assume that the selected criterion is BIC.
Our forward variable selection procedure starts by building
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Table 3 Dimension 10: ratio of the mean and variance of the MSPE over 475 simulations divided for all the competitors by the smallest value

(mean or variance)

R packages stats rpart stats mda mgcev mboost ibr mgcev
d=10 n par tree ppr mars gam gamb K1.05 K1.1 DS ds
mi 50 me 1.7 43 2.5 1.3 1 1.3 1.6 1.6 1.6 1.7

sd 1.5 3.6 2.2 1.3 1 1.2 1.5 1.5 1.5 1.5

100 me 2.5 5.3 33 1.2 1 1.2 22 2.2 22 2.5

sd 24 4.7 3.6 1.3 1 1.1 24 23 24 2.5

200 me 2.7 4.9 3.2 1.1 1 1.1 1.7 1.7 1.7 1.9

sd 2.7 4.1 3.5 1.1 1 1 1.9 1.9 1.8 2.1

my 50 me 1.8 1.6 1.8 1.7 2 1.3 1 1 1.1 1.6
sd 1.6 1.4 2.2 1.6 1.6 1.4 1 1 1.1 1.5

100 me 2.9 32 1.5 3.1 3 24 1 1.1 1.1 1.9

sd 32 33 2.3 32 3 2.8 1 1.2 1.1 1.9

200 me 5.2 5.4 1.3 54 5.1 4.6 1 1.1 1.1 1.1

sd 4.6 4.1 1.7 4.2 4.1 4.1 1 1.2 1.1 1.2

m3 50 me 1.7 1.6 1.9 1.8 1.9 1.3 1 1 1.1 1.6
sd 1.6 1.4 2.1 1.7 1.6 1.3 1 1 1 1.5

100 me 2.8 33 1.6 32 2.9 2.6 1 1.1 1.1 1.8

sd 3.1 33 2.3 3.2 2.9 29 1 1.2 1.1 1.9

200 me 5.1 5.4 1.1 5.5 5 4.6 1 1.1 1.1 1.1

sd 4.6 4 1.3 4.2 4.1 4 1 1.2 1.1 1.2

my 50 me 1.2 3.1 1.7 1.1 1.1 1.2 1.1 1.1 1 1.1
sd 1.1 2.7 1.8 1.2 1.1 1.2 1 1 1 1.1

100 me 1.4 33 2 1.2 1.1 1.1 1.1 1.1 1 1.1

sd 1.3 2.9 2.2 1.3 1 1 1.1 1.1 1 1.1

200 me 1.9 3.5 2.2 1.4 1.3 1.4 1.1 1.1 1 1.1

sd 1.6 2.9 2.2 1.2 1.1 1.1 1.1 1.1 1 1.1

d univariate smoothers, one for each of the explanatory vari-
ables, and each smoother with the same equivalent degree of
freedom. We apply the IBR algorithm to each of these uni-
variate smoothers and select their respective optimal number
of iterations, using GCV. Of these d smoothers, we select the
one with the smallest BIC, and fix that variable. Next, we
consider all d — 1 bivariate smoothers that include the previ-
ously selected variable. Again, we apply the IBR algorithm
and consider the bivariate model with the smallest BIC. If
the latter BIC value is larger than the smallest BIC value
from the univariate fit, we stop the forward fitting selection
and return the univariate smoother. If not, then we consider
all d — 2 trivariate smoothers that extend the “best” bivari-
ate smoother. We proceed with the forward selection until
no improvement in the BIC is observed. This forward selec-
tion procedure has been implemented within the ibr package
(function forward).

5.1 Ceriteria for variable selection

Here, we report on the performance of our variable selection
method using the simulated data in Sect. 4.4. Again, we con-

sider kernel based smoothers and Duchon splines smoother
as our model may contain up to 10 variables, which makes
TPS not practical. To help understand the results and pro-
vide further insights into the qualitative behavior of variable
selection for IBR smoothing, we analyze the selected model
as follows: We roughly divide the selection results into four
categories:

e First category: the variable selection criterion leads to a
selected model which misses some of the true variables
and include some other which are pure noise (‘“wrong”
category).

e Second category: the variable selection criterion leads to
a selected model which misses only some true variables
(“not enough” category).

e Third category: the variable selection criterion leads to a
selected model which includes all the true variables and
some other (“too many” category).

e Fourth category: the variable selection criterion leads to a
selected model which is the good one (“exact” category).

As similar results were obtained for the other functions we
only present the results for function 2.
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Fig. 2 Variable selection
features for the function 2. The
barplot shows the percentage of
occurrences of each category:
category one (“wrong”) dark,
two (“not enough”) dark grey,
three (“too many”) grey and four
(exact) light grey
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As shown in Fig. 2, the percentages of the first category
are roughly the same for all the variable selection criteria
when 7 is small. However when n is bigger, that percentage
is bigger for BIC. The second category leads to models with
poor prediction accuracy. It can be seen that the percent-
age of this category for BIC is greater than those obtained
by the other criteria. That can partly explain the poor pre-
diction accuracy of models selected with BIC because that
criterion tends to select more parsimonious models. The per-
centages of the third category reveals that AIC (especially)
and GCV (to a fewer extend) tend to select too many vari-
ables (compared to BIC). But since IBR is somewhat robust
to the inclusion of a few vacuous variables (see Sect. 4.4),
this does not appear to overly degrade the predictive capabil-
ity of the resulting IBR smoother. The fourth category has a
higher percentage for GCV (if using kernel pilot smoother)
compared to AIC (and BIC) and explains why GCV is bet-
ter at selecting good models for prediction. In conclusion,
we advocate to use again GCV criteria in our function for-
ward.

5.2 Simulation results for variable selection

In Table 4, we compare IBR with variable selection (using
GCV) to its competitors available in R: the leaps package
for classical multivariate regression, mars, gam, gamboost
with their built-in selection procedure and ppr.

The conclusion are about the same as in dimension 5:
IBR gives the best results except for the first function (nearly
additive) with n = 50. Again, the argument df seems unim-
portant for the (kernel) pilot smoother: IBR is robust to
the choice of df. Compared to dimension 5, it can be no-
ticed that the variable selection slightly reduces the differ-
ences.
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6 Real data example: Los Angeles ozone data

As a real world example, consider the classical data set of
ozone concentration in the Los Angeles basin. This is as a
standard dataset for comparing the performance of multi-
variate smoothers (Breiman 1996; Biihlmann and Yu 2003).
The sample size of the data is n = 330 and the number of
explanatory variables d = 8 (Pressure, Wind speed, Humid-
ity, Temperature measured at Sandburg, Temperature mea-
sured at El Monte, Inversion base height, Pressure gradient,
Inversion base temperature and Visibility). We compare our
iterative bias procedure with existing methods.

We estimate mean squared prediction error E[(Y —
(X ))?] by randomly splitting the data into 297 training ob-
servations and 33 test observations and averaging 50 times
over such random partitions.

For the IBR smoother, we use a multivariate Gaus-
sian kernel and select the bandwidth so that the univariate
smoother in each of the variables has the same trace, i.e.,
the same effective degree of freedom, df = 1.1. We do so at
each iteration.

For Duchon or IBR Duchon, since all the variables are
not of the same range, we decide to scale the variables, again
this is done at each iteration. The training part is scaled,
the smoothers are evaluated and new values (centered by
the mean and divided by the standard error evaluated on the
training set) are predicted. Figure 3 summarizes the results.

Low rank Duchon Splines and ibrDS perform better than
the others methods and lead to a reduction of the mean pre-
diction error of more than 15 % over competing multivariate
methods. Recall that L, boosting is a component-wise pro-
cedure (Friedman 2001) ideally suited to fitting constrained
models such as additive models (Biihlmann and Yu 2003).
In order to deal with possible interactions, Bithlmann and
Yu (2006) include second order and quadratic interaction
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Table 4 Ratio of the mean and variance of the errors over 475 simulations

divided for all the competitors by the smallest value (mean or variance)

R packages stats stats mda mgcev mboost ibr mgcev
d=10 n par ppr mars gam gamb KI1.1 K1.3 DS ds
mi 50 me 1.7 3 1.5 1 1.6 1.6 1.5 1.7 2

sd 1.8 2.7 1.6 1 1.5 1.9 1.8 1.7 1.9

100 me 2.5 3.5 1.3 1 1.3 1.1 1 2.3 2.6

sd 2.4 3.9 1.4 1 1.2 1.5 1.4 2.3 2.7
200 me 5.2 6.3 2.2 1.9 2.2 1 1.1 4.7 3.8
sd 4.1 5.4 1.7 1.5 1.5 1 1.1 3.8 32
my 50 me 1.8 2.4 2.2 2 1.6 1 14 1.4 2.1
sd 1.5 2.3 1.7 1.6 1.5 1 1.5 1.3 1.6
100 me 4.8 2.9 5.9 5 4.6 1 1.3 34 3.6
sd 4.1 3.2 4.6 3.9 4 1 1.5 33 2.7
200 me 8.2 2.1 9 7.9 7.6 1.1 1 5.7 1.9
sd 6.9 2.6 6.4 6.2 6.2 1.1 1 5.4 1.8
m3 50 me 2 2.4 2.3 2 1.7 1 1.3 1.5 2.1
sd 1.7 2.4 1.9 1.6 1.5 1 1.3 1.4 1.7
100 me 6.2 3.6 7 5.7 5.6 1 1.3 4 4
sd 5 39 54 4.5 4.7 1 1.5 3.7 3.1
200 me 9.1 1.8 9.4 8.1 8 1.1 1 59 1.9
sd 7.1 2.1 6.7 6.5 6.3 1.1 1 55 1.8
my 50 me 1.8 2.3 1.5 1.2 1.6 1.1 1 1.1 1.5
sd 1.6 2.1 1.3 1 1.4 1.2 1 1 1.3
100 me 2.8 3.6 23 1.9 2.1 1 1 2 2.1
sd 2.2 3.1 1.8 1.3 1.4 1 1 1.5 1.5
200 me 5.6 6.6 4.2 3.8 4 1 1.1 43 3.1
sd 4 54 3.1 2.6 2.6 1 1.1 32 2.6
Fig. 3 Boxplot of the MPE for —
the different competing methods g
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terms within the L, boosting framework. The inclusion of
higher order interaction terms increases the number of ex-
planatory variables from 8 to 45. With the interaction terms
included, the L, boosting proposed by Biihlmann and Yu
(2003) yields an out of sample prediction MSE of 15.60.
This result is obtained by discarding the two gross outliers in

the 50 random partitions. Without removing these outliers,
their results remain consistent with the results published in
Biihlmann and Yu (2006). Our iterative bias reduction pro-
cedure is fully multivariate and finds directly an estimation
of m(Xy,...,X4) (Where d = 8). As its results are better
than additive models or models with low order interactions,
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we can conclude that interaction of high order is significant
for this dataset.

The previous results were obtained using all the 8 co-
variates. Further improvements are possible using variable
selection. We apply our forward variable selection method
to each of the 50 randomly split data (into 297 observations
to fit the model and 33 observations to validate the predic-
tions) to select the predictive variables using the GCV crite-
rion. With high consistency, the procedure selects the 5 vari-
ables Wind, Humidity, Temp_Sand, Inv_Base_height, Pres-
sure_Grad. Furthermore, with only these five variables, the
mean predicted error drops to 13.8 (Fig. 4), which is a small
improvement over the prediction error we had when using
all the 8 variables.

7 Conclusion

Cornillon et al. (2011b) propose a new smoothing method
IBR that has the desirable property of being simple and yet
capable of adaptation, which suggests that it may be used to
perform fully nonparametric smoothing in moderate dimen-
sions. This paper compares this new method with classical
and non-classical multivariate smoothing methods.

This simulation study shows that even for very moderate
learning sample size (such as n =45 or n = 90) in moderate
dimension (up to d = 10) nonparametrics smoothers such
as IBR (kernel or splines, package ibr) or low rank splines
(Duchon or TPS, package mgcv) can lead to significant im-
provement over structurally constrained modeling such as
GAM. These two kinds of modeling are very close in per-
formances and can be thought as leading more or less the
same results.

One can think that in the light of the results, the classi-
cal idea of quantifying the amount of non-additivity in the
regression function m(.) by measuring the distance between
GAM modeling and a fully nonparametric modeling can be
investigated in a practical manner.
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