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Introduction

The present dissertation summarizes my research work in nonparametric Statistics, since my first steps
as a PhD student under the supervision of Béatrice Laurent and Pascal Massart.

I fell in the amazing world of the bootstrap at the end of my Master’s years when Pascal Massart
encouraged me to read Evarist Giné’s course for the St. Flour Summer School of Probability. Although
I had, at this time, real bootstraps on my Dr. Martens shoes, which might have enabled me to pull up
myself over it, I chose not to leave this world where almost anything is possible.
I particularly emphasize the word almost here, as one central guideline of my work was, and is still,
the quantification of this almost through nonasymptotic studies of bootstrap approaches.

Nonasymptotic nonparametric Statistics is thus at the core of this thesis, with a main subject: minimax
adaptive tests based on aggregation or multiple procedures, which is developed in four chapters, each
devoted to a different generic testing problem. Statistical learning issues are also tackled as such in a
chapter exclusively focusing on the binary classification problem, but also in two-sample and indepen-
dence testing problems through kernel or nearest neighbors methods, always with general bootstrap
approaches in background.
The present document is therefore organized in five chapters, whose content is briefly described below.

The first chapter is devoted to minimax adaptive goodness-of-fit tests in three different models: a
density model, a periodic regression model, and a Poisson process model.
In the density model, where the observed data are modeled by an i.i.d. sample from a probability
distribution with density f , we propose to test that f belongs to a set of densities F0. We first consider
the case where F0 is reduced to a single density f0, for which we construct minimax adaptive tests,
based on an aggregation principle. The main contribution of this work, as compared with anterior ones,
lies in the nonasymptotic nature of the developed tests, that can thus be implemented on real data
sets with moderate size, without any loss of significance. Then, these tests are extended to the case
where F0 is a parametric translation/scale family. Up to our knowledge, the obtained tests were the
first minimax adaptive tests for such parametric null hypotheses.
In the fixed design regression model with a Gaussian noise, we consider the classical signal detection
problem, focusing on the case where the signal is assumed to be periodic. We first measure the exact
impact of such an assumption, by evaluating the minimax separation rates over periodic Sobolev balls.
Then, motivated by a real application in target detection via laser vibrometry, we construct minimax
adaptive tests that take advantage of the periodicity of the signal, thus leading to better theoretical
and experimental performance than more general signal detection tests.
In the Poisson process model, where the observed data are modeled by a - possibly inhomogeneous -
Poisson process, we are interested in the problem of testing that the process is homogeneous, that
is, has a constant intensity. We particularly focus on alternatives with very irregular intensities that
can be especially difficult to distinguish from constant intensities in practice. The determination of
minimax separation rates over classes of such very irregular intensities, here chosen as weak Besov
bodies, constitutes the most important contribution of this work. We indeed prove that these minimax
separation rates are so large that there is, on the one hand, no additional price to pay for adaptivity
and, on the other hand, no difference with the minimax risk in estimation problems, which is completely
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unusual in the minimax testing scene. The corresponding minimax adaptive tests are constructed from
an aggregation approach inspired by already existing ones in other settings, but with a new choice
of critical values for the involved single tests, which is more general and which allows to detect more
alternatives than usual.

The topics which are the most representative of my research concerns are certainly the two-sample
problems where bootstrap approaches have to be considered to define nonasymptotic testing proce-
dures. As most of the ideas developed in these topics are inspired by anterior works in statistical
learning, and more precisely in binary classification, their description is postponed to the third chapter
of the manuscript, the second one being dedicated to binary classification issues.
Thus, the second chapter presents the construction of classification rules as minimizers of the penalized
empirical risk, with general weighted bootstrap penalties based on symmetrization arguments or other
tricks from the empirical processes theory. This work, which extends papers on Rademacher penalties
or complexities, may be viewed as a step towards routine nonasymptotic studies of general bootstrap
approaches. The developed concentration tools are rather general and may indeed be used in other
contexts. But due to the particular assumptions of the binary classification framework and the global
minimax point of view that is adopted here, they have to be improved to fit more sophisticated
statistical problems: the interested reader may have a look at the posterior developments of Arlot on
extended bootstrap approaches, including cross validation ones.
A short work on the functional binary classification problem then follows, based on nearest neighbors
and hold-out validation approaches.

The third chapter therefore deals, as announced, with two-sample problems. Three different models are
considered as in the first chapter: a density model, a regression model (here with a random design and
a heteroscedastic noise), and a Poisson process model. In all these models, we construct new testing
procedures from aggregation schemes which involve specific nonasymptotic bootstrap or permutation
approaches. The proposed test statistics are U -statistics based on general kernels, which are closely
linked to minimax adaptive estimation by model selection, thresholding, and approximation kernel
methods. The main novelty is that the kernels can also be chosen as reproducing characteristic kernels,
which are now well-known in the statistical learning community, or as nearest neighbors kernels. In the
Poisson process model, we prove that our tests satisfy nonasymptotic minimax adaptivity properties,
and that the reproducing characteristic kernel choice in particular leads to a nice interpretation of some
results in terms of uniform separation rates in the corresponding Reproducing Kernel Hilbert Space.

In the fourth chapter, we address the problem of testing independence of two point processes, motivated
by the neuroscience problem of synchrony detection in spike train analysis. We introduce new testing
procedures, whose test statistics are based on U -statistics, and whose critical values are constructed
from bootstrap and permutation approaches. This work is rather atypical in the present thesis since
the tests are here single tests (and not based on aggregation), mainly studied from an asymptotic point
of view. Some foundations of a forthcoming nonasymptotic study are proposed in the last parts of the
PhD thesis of Mélisande Albert.

The fifth and last chapter focuses on two very different multiple testing issues. The first one follows the
theoretical work presented in the fourth chapter and deals with the neuroscience application which has
motivated it. A multiple testing procedure is proposed and studied, in order to answer the problem of
detecting precise locations of dependence periods between two spike trains, modeled by point processes.
The second one is a purely theoretical issue about the definition of counterparts for uniform and
minimax separation rates for multiple tests, with the ambition to lay the bases of a minimax theory
for multiple testing.

As they represent the main concerns of the present dissertation, let us now give a common framework
for nonparametric statistical hypothesis testing questions, essentially intended to set the notation and
recall the usual basic vocabulary. Note that the notation and the vocabulary for binary classification
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and multiple testing problems are set in the corresponding chapters, that is the second and fifth ones.
The bootstrap and permutation formalism is introduced in the second, third and fourth chapters.

Considering an observed random variable X, defined on a probability space (Ω,A,P), and given a
possible set P of distributions P for X, a hypothesis is defined through a subset of P. In a classical
single testing problem, two hypotheses are considered: the null hypothesis (H0 ), which is viewed as
the favorite one, and expressed from a subset P0 as

(H0 ) P ∈ P0,

and an alternative (H1 ), expressed from a subset P1 ⊂ P \ P0 as

(H1 ) P ∈ P1.

In a multiple testing problem, more hypotheses are considered, and then they are often confused with
their associated subset of P. Such convention is used in Chapter 5.
In an abstract way, a (single) test is a rule which allows to decide, from the observation of X, to reject,
or not, the null hypothesis (H0 ) in favor of the alternative (H1 ). Mathematically, it is represented as
a statistic φ depending on X,

— with value 1 when X leads to a rejection of (H0 ) in favor of (H1 ),
— with value 0 when X does not lead to a rejection of (H0 ) in favor of (H1 ),
— otherwise, with a value in (0, 1), equal to the conditional probability of rejection of (H0 )

given X.
In the present thesis, only nonrandomized tests are considered, that is tests with values in {0, 1}.
Such tests are evaluated through their first and second kind error rates

ER1(φ) = sup
P∈P0

P (φ = 1) and ER2(φ) = sup
P∈P1

P (φ = 0) . (1)

Note that the first kind error rate ER1(φ) of φ is also sometimes named the size of the test φ.
Given some prescribed error rates levels α and β in (0, 1), following the classical Neyman-Pearson
principle, it is required in priority that

ER1(φ) ≤ α, (2)

and φ is then said to be level α, or of level α. It is next required that

ER2(φ) ≤ β, (3)

with P1 as large as possible, ideally equal to P \ P0.
However, in general, the set P of possible distributions for X is so large that constructing such "ideal"
tests is impossible when α + β < 1. Smaller sets of possible distributions are therefore considered.
Then, a distance between the null hypothesis and these sets, from which condition (3) is guaranteed, is
evaluated, leading to the notions of uniform separation rates and minimax separation rates, precisely
defined in each concerned chapter of this dissertation.

Nonparametric tests of level α, that is satisfying (2), can thus be evaluated through their uniform
separation rates over some sets of possible distributions of particular interest for the considered study,
which are said to be optimal when they are of the same order as the corresponding minimax separation
rates. These criteria are of course closely linked to the more traditional power function P ∈ P1 7→
P (φ = 1), which is used in other optimality criteria such as the consistency of the tests.
A test φα of level α is said to be less conservative than another test φ′α if ER1(φ′α) ≤ ER1(φα) ≤ α. In
particular, if basically φ′α = 1 ⇒ φα = 1, then φα is clearly less conservative, but also more powerful
than φ′α.
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A nonrandomized test φα of level α is often defined from a real valued test statistic, that is, a real
valued statistic T , depending on X, associated with a critical value cα depending on α (and possibly
X), as φα = 1{T>cα} or φα = 1{T≥cα}. When α 7→ φα is increasing in the sense that 0 ≤ α ≤ α′ ≤ 1⇒
φα ≤ φα′ , this test can also be defined through its corresponding p-value given by

inf {α, φα = 1} .

Combining Lemma 1 and Corollary 14 in [14], we prove the following useful lemma, which allows to
conveniently go back and forth test statistics and critical values on the one hand, p-values on the other
hand. Before stating this result, let us recall some basic definitions.
Let T be a real valued statistic T depending on X. It is well-known that the cumulative distribution
function (c.d.f.) F of the distribution of T , defined by F (t) = P (T ≤ t) for all t in R, is a càdlàg
function, and that its generalized inverse function or quantile function F−1 defined by F−1(u) =
inf { t, F (t) ≥ u} for all u in [0, 1] is a càglàd function. On the contrary, the function F− defined by

∀t ∈ R, F−(t) = P (T < t), (4)

is a càglàd function, and is thus named in the following the càglàd c.d.f. of the distribution of T . Its
generalized inverse function F−1

− defined by

∀u ∈ (0, 1), F−1
− (u) = sup { t, F−(t) ≤ u} , (5)

is then a càdlàg function. More properties about all these functions, and useful links between them
can be found in [14, Lemma 13].

Lemma 1. Let T be a real-valued statistic depending on X, whose distribution does not depend on P
provided that P belongs to P0. Denote by F and F− the (càdlàg) c.d.f. and the càglàd c.d.f. of this
distribution under (H0 ), and by F−1 and F−1

− their respective generalized inverse functions as defined
above. Let p(T ) = 1 − F−(T ), and α be some fixed level in (0, 1). Then the four tests 1{T>F−1(1−α)},
1{T>F−1

− (1−α)}, 1{p(T )≤α}, 1{p(T )<α} are of level α, and their associated p-value is p(T ), which satisfies

sup
P∈P0

P (p(T ) ≤ α) ≤ α.

Moreover,
1{p(T )<α} ≤ 1{p(T )≤α},

1{p(T )<α} = 1{T>F−1
− (1−α)} ≤ 1{T>F−1(1−α)},

1{p(T )≤α} = 1{T>F−1
− (1−α)} = 1{T>F−1(1−α)} a.s. if F−(F−1

− (1− α)) < 1− α,
1{p(T )≤α} = 1{T≥F−1

− (1−α)} a.s. if F−(F−1
− (1− α)) = 1− α.

Note that when the c.d.f. F is continuous, the four tests considered in the above lemma are almost surely
equal. As this lemma also applies if F is a conditional c.d.f., it can be used for bootstrap or permutation
based tests. In this case, the considered conditional distributions are naturally noncontinuous: the less
conservative above test is of course 1{p(T )≤α}.

Let us finally specify a few conventions and notations that are used in the present document.
All the collections of hypotheses, of tests, of classes, considered here are at most countable.
For every x, y in R, we set x ∧ y = inf {x, y} and x ∨ y = sup {x, y}.
The symbols b.c and d.e respectively denote the floor and ceiling functions as usual, and for every x in
R, (x)+ = x1x≥0.
For any finite set C, #C denotes the cardinality of C that is the number of elements in C.
The Lebesgue measure on R or on Rd is denoted by λ.
All along this dissertation, C denotes a positive constant that may vary from line to line. The depen-
dency of C with respect to various parameters is specified by the notation C(.). Universal positive
constants are more likely denoted by κ.



Chapter 1

Goodness-of-fit tests

1.1 Introduction

Goodness-of-fit testing problems are largely encountered in the statistical literature, being part of the
oldest and most fundamental points in the hypothesis testing theory. From the historical Pearson’s
chi-square test to more modern tests based on kernel methods in the statistical learning spirit, many
nonparametric goodness-of-fit tests have been developed in various models, in order to apply to more
and more precise questions in numerous fields.
In this chapter, we deal with nonparametric goodness-of-fit tests in three different models: a classical
density model, a periodic Gaussian regression model, and a Poisson process model, each being dedicated
to specific applications.
X generally denotes a set of random variables which are defined on a probability space (Ω,A,P),
observed on an interval X of R, whose distribution Pf depends on an unknown function f , typically
assumed to belong to some subspace F of L2(X, µ), for some σ-finite measure µ.

A goodness-of-fit testing problem can be expressed as the problem of testing

(H0 ) f ∈ F0 against (H1 ) f 6∈ F0,

for a given subset F0 of L2(X, µ).

For any event E based on X, P(H0 ) (E ) then denotes as usual supf∈F0
Pf (E ), and Ef denotes the

expectation with respect to Pf .

1.1.1 Nonasymptotic minimax adaptivity

The point of view that is adopted here to evaluate the considered tests is nonasymptotic, and based on
minimax adaptivity criteria. So, given a first kind error level α in (0, 1), any of our tests φ is primarily
required to be of level α, that is to satisfy the property (2), that can also be expressed with the present
notation as

(Plevel,α ) P(H0 ) (φ = 1) ≤ α.

Then, given a second kind error level β in (0, 1), any of our tests φ is secondarily required to achieve,
over several classes of alternatives simultaneously, the minimax separation rates defined for α and β
as follows.

Definition 1 (Uniform and minimax separation rate). Let d be a metric over the space F , and a class
of functions F1 ⊂ F . Let α and β be fixed error rates levels in (0, 1), and a test φα of (H0 ) against
(H1 ) satisfying (Plevel,α ).
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The uniform separation rate of φα over F1 with prescribed second kind error rate β, for the metric d,
is defined by

SRβ
d (φα,F1 ) = inf

{
r > 0, sup

f∈F1, d(f,F0 )≥r
Pf (φα = 0) ≤ β

}
.

The corresponding minimax separation rate over F1 with prescribed error rates α and β, for the metric
d, is defined by

mSRα,β
d (F1 ) = inf

φα satisfying (Plevel,α )
SRβ

d (φα,F1 ) ,

where the infimum is taken over all possible level α tests.

Definition 2 (Minimax (adaptive) test). Let d be a metric over the space F , and a collection F1 of
classes of functions F1 ⊂ F . A level α test φα is said to be minimax over a class F1 of the collection
F1 for the metric d if SRβ

d (φα,F1 ) achieves mSRα,β
d (F1 ), possibly up to a multiplicative constant

depending on α and β. It is said to be minimax adaptive over F1 if SRβ
d (φα,F1 ) achieves, or nearly

achieves, mSRα,β
d (F1 ), for every F1 in F1 simultaneously, without knowing in advance to which class

of the collection the function f may belong. This property is formalized in the following as(
Padaptive,α,β,F1,d

)
SRβ

d (φα,F1 ) achieves or nearly achieves mSRα,β
d (F1 ), for every F1 in F1.

These definitions due to Baraud [Bar02] translate, in a nonasymptotic framework, asymptotic criteria
that in fact originate in Ingster’s work [Ing82, Ing84, Ing93]. A precise definition of the asymptotic
minimax testing setup with exact separation constants (that is not tackled in the present dissertation)
can be found in [LT00].

We give below a condensed description of the main contributions to minimax testing and adaptive
minimax testing, including the works presented here and references that are anterior, as well as poste-
rior, to them. This bibliography is of course not exhaustive, as the literature about (adaptive) minimax
testing is too huge to be presented in such a way, and I wish to apologize for authors that I omit here.
In particular, are only cited the minimax separation rates for L2-metrics as they are the only ones
considered in this thesis. The investigated classes are Besov spaces Bs,p,q(R) or Besov bodies (see
the books [Tri06, DL93, GN15] for definitions for instance, and articles on minimax estimation or
testing, like [DJ98]). Some particular Besov spaces are distinguished, such as Hölder spaces Hs(R) =
Bs,∞,∞(C(s)R) and Sobolev spaces Ss,2(R) = Bs,2,2(C(s)R), as they were the first ones to be studied
in the fundamental papers by Ingster.
The references on multivariate Nikol’skii-Besov spaces are postponed to Section 3.2, since such anisotropic
spaces are only considered in this section. Weak Besov spaces wBs′(R′) are defined in Section 1.4.
Moreover, testing problems in more complex models such as convolution models (see [But07, BMP09]
for instance), high-dimensional models (see [VV10, ITV10, BI13]), or random graphs or networks
models (see [ACV14] for instance), are not cited in the following summary: we only focus on the models
considered in this chapter or on models close to them. In the following, s′′ = s− (1/(2p)− 1/4)+. The
parameter ε stands for the standard deviation of the white noise model, while n denotes the sample
size in the regression and density models, and the parameter which defines the asymptotics in each
cited reference in the Poisson process model.
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Models

White noise Gaussian
regression

Density Poisson process

Minimax separation rates

Hs(R) ε
4s

4s+1 n−
2s

4s+1 (s > 1/4) n−
2s

4s+1

[Ing93] [GP01] [Ing93, Pou02]

Ss,2(R) ε
4s

4s+1 n−
2s

4s+1 ∧ n−1/4 n−
2s

4s+1 n−
2s

4s+1

[Ing82] [HK99] [4] [Ing84] [IK07]

Bs,p,q(R) ε
4s′′

4s′′+1 n
− 2s′′

4s′′+1 ∧ n−1/4 n−
2s

4s+1

[Ing93, (p≥2)] [Bar02, (p=q≤2)] [IK07, (p=2)]

[LS99, (p<2, sp>1)] [LLM12, (p=q≤2)] [7, (p=2, q=∞)]

Bs,2,∞(R) n−
2s

1+4s (s′≤2s)

∩wBs′(R′)
(

lnn
n

) s′
2s′+1 (s′>(2s)∨ (1/2))

[7]

Adaptive minimax separation rates

Hs(R)
(√

ln lnn
n

) 2s
4s+1

(s>1/4)
(√

ln lnn
n

) 2s
4s+1

[GP05, BHL03] [Ing00] [5]

Ss,2(R)
(
ε
(

ln ln
(
ε−2

)) 1
4

) 4s
4s+1

(√
ln lnn
n

) 2s
4s+1

(s>1/4)
(√

ln lnn
n

) 2s
4s+1

[Spo96] n−1/4 (s≤1/4) [Ing00]

[Bar02, BHL03] [4]

Bs,p,q(R)
(
ε
(

ln ln
(
ε−2

)) 1
4

) 4s′′
4s′′+1

( √
ln lnn
n

) 2s
4s+1

( √
ln lnn
n

) 2s
4s+1

[Spo96, (sp>1)] [Ing00,(p≥2, q>1)] [7, (p=2, q=∞)]

[5, (p=2, q=∞)]

Bs,2,∞(R)
( √

ln lnn
n

) 2s
4s+1

(s′≤2s)

∩wBs′(R′)
(

lnn
n

) s′
2s′+1 (s′>(2s)∨ (1/2))

[7]

1.1.2 Aggregated tests

Most of minimax adaptive tests have been constructed on the following general principle of aggregation.
First, are considered a collection {F0,m, m ∈M} of subsets of F such that F0 ⊂ ∩m∈MF0,m, and the
collection of associated hypotheses {(H0,m ) , m ∈M}, such that

(H0,m ) f ∈ F0,m.

Then, for every m inM and every level u in (0, 1), a single test φm,u of

(H0,m ) f ∈ F0,m against (H1,m ) f 6∈ F0,m,
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satisfying (Plevel,u ), is constructed.
Given α in (0, 1), a collection {um,α, m ∈M} of individual levels in (0, 1) is chosen, and the aggregated
test corresponding to the collection of single tests Φα =

{
φm,um,α , m ∈M

}
is defined as

Φ̄α = sup
m∈M

φm,um,α . (1.1)

The aggregated test Φ̄α is thus defined as the test rejecting (H0 ) when at least one (H0,m ) is rejected
with φm,um,α .
Note that in most of the papers dealing with such aggregated tests, the φm,um,α ’s are not considered
as individual tests of (H0,m ) against (H1,m ), but as some tests of the original single null hypothesis
(H0 ) against the alternative (H1 ). This is only in this case that one can say that each φm,um,α is
of level um,α, since φm,um,α only satisfies

(
Plevel,um,α

)
, which does not necessarily guarantee that

supf∈F0,m
Pf
(
φm,um,α = 1

)
≤ um,α.

One of the main concerns here is to choose the collection {um,α, m ∈M} of individual levels in (0, 1),
so that the aggregated test Φ̄α finally satisfies (Plevel,α ).
Assume that for everym inM, a test statistic Tm, whose distribution does not depend on the unknown
function f provided that f belongs to F0, is available, which is typically the case when F0 is reduced
to a singleton. Then, φm,u may be defined as

φm,u = 1{Tm>F−1
m,−(1−u)},

where F−1
m,− is the càdlàg quantile function (see (5)) of the known distribution of Tm under (H0 ).

Bonferroni-type aggregated tests. In this setup, the most obvious choice for um,α is a Bonferroni-
type choice with um,α = α/#M. This leads to the Bonferroni-type aggregated test Φ̄Bonf

α defined
by (1.1), based on the collection

ΦBonf
α =

{
φm,α/#M, m ∈M

}
=
{
1{Tm>F−1

m,−(1−α/#M)}, m ∈M
}
. (1.2)

Given a family of positive weights (wm)m∈M such that
∑

m∈Mwm ≤ 1, a weighted Bonferroni-type
choice with um,α = wmα, can also be considered. This leads to the weighted Bonferroni-type aggregated
test Φ̄wBonf

α defined by (1.1), based on the collection

ΦwBonf
α =

{
φm,wmα, m ∈M

}
=
{
1{Tm>F−1

m,−(1−wmα)}, m ∈M
}
. (1.3)

Note that Φ̄Bonf
α is a particular case of weighted Bonferroni-type aggregated test with wm = 1/#M,

for every m inM.
From the properties of the càglàd c.d.f. Fm,− and the càdlàg quantile function F−1

m,− of the distribution
of Tm under (H0 ) (see for instance [14, Lemma 13]), we deduce the following result, whose proof is
straightforward.

Lemma 2. Given α in (0, 1), let ΦwBonf
α be the collection of weighted Bonferroni-type tests defined

by (1.3), and Φ̄wBonf
α its corresponding aggregated test, as given by (1.1). Then Φ̄wBonf

α satisfies
(Plevel,α ), and  ΦwBonf

α =
{
1{w−1

m ( 1−Fm,−(Tm) )<α)}, m ∈M
}
,

Φ̄wBonf
α = 1{minm∈M w−1

m ( 1−Fm,−(Tm) )<α}.
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Less conservative aggregated tests. A less conservative choice than the Bonferroni-type one was
proposed by Baraud, Huet and Laurent [BHL03]. It consists in the aggregated test Φ̄BHL

α defined by
(1.1), based on the collection

ΦBHL
α =

{
φm,um,α , m ∈M

}
=
{
1{Tm>F−1

m,−(1−um,α)}, m ∈M
}
, (1.4)

with
um,α = sup

{
u, P(H0 )

(
∃m ∈M, Tm > F−1

m,−(1− u)
)
≤ α

}
.

We further propose in [7] (see Section 1.4) to consider a more general weighted version of this procedure.
The test Φ̄FLR

α is the aggregated test defined by (1.1), based on the collection

ΦFLR
α =

{
φm,um,α , m ∈M

}
=
{
1{Tm>F−1

m,−(1−um,α)}, m ∈M
}
, (1.5)

with
um,α = wm sup

{
u, P(H0 )

(
∃m ∈M, Tm > F−1

m,−(1− wmu)
)
≤ α

}
.

Note that the choice wm = 1/#M, for every m inM, allows to recover Φ̄BHL
α .

Lemma 3. Given α in (0, 1), let ΦFLR
α be the collection of tests defined by (1.5) and Φ̄FLR

α be its
corresponding aggregated test, as given by (1.1). Then, Φ̄FLR

α satisfies (Plevel,α ) and if F− denotes the
càglàd c.d.f. (see (4)) of the distribution of minm∈Mw−1

m (1− Fm,−(Tm)) under (H0 ), ΦFLR
α =

{
1{w−1

m ( 1−Fm,−(Tm) )<F−1
− (α)}, m ∈M

}
,

Φ̄FLR
α = 1{minm∈M w−1

m ( 1−Fm,−(Tm) )<F−1
− (α)}.

Furthermore, Φ̄wBonf
α ≤ Φ̄FLR

α , which means that the test Φ̄FLR
α is less conservative than Φ̄wBonf

α . As a
particular case, with wm = 1/#M, Φ̄Bonf

α ≤ Φ̄BHL
α , which means that Φ̄BHL

α is less conservative than
Φ̄Bonf
α .

Proof. Let us consider ΦFLR
α defined by (1.5). Then,

um,α = wm sup

{
u, P(H0 )

(
min
m∈M

w−1
m (1− Fm,−(Tm)) < u

)
≤ α

}
,

= wmF
−1
− (α).

Therefore,
ΦFLR
α =

{
1{w−1

m ( 1−Fm,−(Tm) )<F−1
− (α)}, m ∈M

}
,

and the aggregated test Φ̄FLR
α can be written as

Φ̄FLR
α = 1{minm∈M w−1

m ( 1−Fm,−(Tm) )<F−1
− (α)}.

The fact that Φ̄wBonf
α satisfies (Plevel,α ) leads to F−(α) ≤ α, so α ≤ F−1

− (α) and Φ̄wBonf
α ≤ Φ̄FLR

α .

Use of instrumental conditional distributions. In cases where F0 is not reduced to a singleton,
the distribution of the test statistics under (H0 ) may still depend on the unknown function f . Assume
that given some random variable Z, the conditional distribution of Tm becomes free from f , provided
that f belongs to F0. Denoting by q(Z)

m the càdlàg quantile function of this conditional distribution
under (H0 ), for every u in (0, 1), let φm,u be the test given by

φm,u = 1{
Tm>q

(Z)
m (1−u)

}.
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Then notice that for every u in (0, 1), if f is in F0, by definition of q(Z)
m ,

Pf (φm,u = 1) = Ef
[
Pf

(
Tm > q(Z)

m (1− u)
∣∣∣Z )] ≤ u.

Hence, φm,u is a test of (H0 ) against (H1 ) of level u, and q(Z)
m (1− u) is a reasonable random critical

value associated with Tm.
Now define a collection

{
u

(Z)
m,α, m ∈M

}
of random variables in (0, 1), depending on Z, such that

u(z)
m,α = wm sup

{
u, P(H0 )

(
∃m ∈M, Tm > q(z)

m (1− wmu)
∣∣∣Z = z

)
≤ α

}
. (1.6)

This leads to the collection of tests

ΦcondFLR
α =

{
φ
m,u

(Z)
m,α

, m ∈M
}

=
{
1{

Tm>q
(Z)
m

(
1−u(Z)

m,α

)}, m ∈M}, (1.7)

and the corresponding aggregated test Φ̄condFLR
α , defined by (1.1), which satisfies (Plevel,α ).

Links with multiple tests. Some precise links between the above aggregated tests and classical
Bonferroni and min-p multiple tests are established under particular conditions in [14, Proposition 2]
(see Chapter 5, Section 5.3.1). Assume that for every m in M, the distribution of Tm under (H0,m )
does not depend on f provided that f belongs to F0,m, and let p(Tm) = 1− Fm,−(Tm) be the p-value
associated with the test φm,u = 1{Tm>F−1

m,−(1−u)} as in Lemma 1. Then, we have seen in Lemma 2 that

ΦwBonf
α =

{
1{w−1

m p(Tm)<α}, m ∈M
}
.

This collection of test is clearly related to the classical weighted Bonferroni multiple test based on the
set of p-values {p(Tm), m ∈M} for the collection of hypotheses {(H0,m ) , m ∈M}.

Now, if the distribution of minm∈Mw−1
m p(Tm) is free from f when f belongs to ∩m∈MF0,m, and if F−

denotes here the càglàd c.d.f. of this distribution, one has also seen in Lemma 3 that

ΦFLR
α =

{
1{w−1

m p(Tm)<F−1
− (α)}, m ∈M

}
.

This collection of test is precisely linked to the first step of a classical weighted min-p multiple test
based on the set of p-values {p(Tm), m ∈M} for the collection of hypotheses {(H0,m ) , m ∈M}.

Finally, the aggregated test ΦcondFLR
α can be related to multiple tests based on randomization such as

the ones constructed by [RW05].

Notice however that the assumptions needed to establish the exact present parallel between aggregated
tests and multiple tests, though apparently simple, are quite strong, and that among the testing prob-
lems investigated in this chapter, the only signal detection framework satisfies them with a collection
of hypotheses {(H0,m ) , m ∈M} rich enough.

In the present chapter, we only consider continuous distributions, so Fm,− and F−1
m,− are respectively

equal to Fm and F−1
m , which are the classical c.d.f. and quantile function of the known distribution of

Tm under (H0 ).

In the following, for any bounded real function g defined on X, we set ‖g‖∞ = supx∈X |g(x)|, and for
all M > 0, L∞(M) denotes the L∞-ball with radius M : L∞(M) = {g : X→ R, ‖g‖∞ ≤M }.
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1.2 Goodness-of-fit tests in a density model

This section, mainly based on a joint paper with Béatrice Laurent [5], is devoted to goodness-of-fit
tests in the following density model.

M(1)
density X = Xn = (X1, . . . , Xn) is a sample of n i.i.d. random variables with distribution

Pf of density f with respect to the Lebesgue measure λ on X = R.

We assume that f belongs to L2(R, λ), endowed with the classical L2-norm ‖.‖2, L2-metric d2, and
their corresponding scalar product 〈., .〉2.

Given a specified probability density f0 with respect to λ, belonging to L2(R, λ), we consider the
problems of testing

(H0 ) f ∈ F0 against (H1 ) f 6∈ F0,

where either F0 = {f0 } or

F0 =

{
1

σ
f0

(
.− µ
σ

)
, (µ, σ) ∈ K

}
, (1.8)

for some subset K of R× (0,+∞).

Many anterior works to [5] were devoted to the present goodness-of-fit testing problem in the density
model from the minimax point of view, as seen in Section 1.1.1, the closest one being [Ing00]. However,
none of them were based on nonasymptotic approaches, and even if considering the asymptotic point
of view, very few of them dealt with the case where F0 is a parametric family. To our knowledge, the
only one was in fact [Pou02], yet, in this article, the issue of adaptivity is not tackled. Hence the exact
adaptive minimax separation rates were not known.
Our paper [5] fills a part of these gaps: here are constructed nonasymptotic goodness-of-fit tests, that
are minimax adaptive at least when F0 = {f0}, for which the classical minimax adaptive rates are
achieved. In the case where F0 is a parametric family, a loss of efficiency of the order of a (lnn)1/2

factor (instead of the usual (ln lnn)1/2 one) is highlighted. Although similar phenomena have already
been observed in [4], or [CD12], the obtained results do not allow to be sure that such an extra (lnn)1/2

factor is unavoidable.
As explained in the following, the proposed tests are closely linked with model selection approaches.
Other tests were developed in this spirit, such as the data-driven versions of Neyman’s test [Ney37]
proposed in [BR92, KL95, IKL97]. But all those tests were constructed with a penalized criterion
usually dedicated to the estimation of the density f , such as Schwarz’s BIC, so that the tests can not
be minimax adaptive. We prove in Section 1.2.2 that a more appropriate choice for the penalty term
would be the one used in the estimation of quadratic functionals of f like in [Lau05]. Our tests are
based on an even sharper choice.

1.2.1 Minimax adaptive goodness-of-fit tests for a noncomposite null hypothesis

We here consider the case where F0 is the singleton {f0}.
The tests we propose are based on the aggregation principle presented in Section 1.1.2. Considering a
collection of subspaces {Sm, m ∈M} of L2(R, λ), we introduce for every m inM,

F0,m = {f ∈ L2(R, λ), ΠSm(f − f0) = 0} ,

where ΠSm denotes the orthogonal projection onto Sm with respect to 〈., .〉2.
Following the aggregation principle, a first step is then to construct single tests of

(H0,m ) ΠSm(f − f0) = 0 against (H1,m ) ΠSm(f − f0) 6= 0.

These tests are here based on the estimation of ‖ΠSm(f − f0)‖22.
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For all m inM, let {bl, l ∈ Lm} be some orthonormal basis of Sm with respect to 〈., .〉2.
The statistic

Tm = Tm(X1, . . . , Xn) =
1

n(n− 1)

∑
l∈Lm

n∑
i 6=j=1

bl(Xi)bl(Xj) + ‖f0‖22 −
2

n

n∑
i=1

f0(Xi) (1.9)

is then an unbiased estimator of ‖ΠSm(f)‖22 + ‖f0‖22 − 2〈f, f0〉2, and thus a reasonable estimator of
‖ΠSm(f − f0)‖22. A particularly interesting case is when f0 belongs to Sm, so that Tm is an unbiased
estimator of ‖ΠSm(f − f0)‖22.
Let us denote by F−1

m,− the càdlàg quantile function of the distribution of Tm under the null hypothesis
(H0 ), which is, of course, completely free from the unknown density f .
We can now consider the single test

φm,u = 1{Tm>F−1
m,−(1−u)},

and given a fixed level α in (0, 1), the collections of tests ΦBonf
α and ΦBHL

α , as well as the corresponding
aggregated tests Φ̄Bonf

α and Φ̄BHL
α , as defined in Section 1.1.2 by (1.2), (1.4), and (1.1).

Notice that, except in very particular cases (see Lemma 1), the càdlàg quantile function can be replaced
by the usual quantile function F−1

m , hence, for simplicity, we only use F−1
m in the following.

We introduce a collection of linear subspaces {Sm, m ∈M} generated by constant piecewise functions
and scaling functions from a wavelet basis.

For all D in N \ {0} and k in Z, let b(1,D,k) =
√
D1[k/D,(k+1)/D).

For all D = 2J , J in N, and k in Z, let b(2,D,k) = 2J/2ϕ(2J . − k), where ϕ is a compactly sup-
ported scaling function or father wavelet such that, associated with a mother wavelet ψ, for all J
in N,

{
2J/2ϕ(2J .− k), k ∈ Z

}
∪
{
ψj,k = 2j/2ψ(2j .− k), j ∈ N, j ≥ J, k ∈ Z

}
form an orthonormal

wavelet basis of L2(R, λ).

Let D1 and D2 be some subsets of D1 = N \ {0} and D2 = {2J , J ∈ N} respectively, such that
D1 ∪ D2 6= ∅. Then, the considered collection {Sm, m ∈M} is defined by:

— M = {(δ,D), δ ∈ {1, 2}, D ∈ Dδ } ,
— For m = (δ,D) inM,

— L(1,D) = {(1, D, k), k ∈ Z},
— L(2,D) = {(2, D, k), k ∈ Z}.
— Sm is generated by {bl, l ∈ Lm } with the bl’s defined above.

Theorem 1 (Fromont, Laurent, 2006). Let X = Xn be an i.i.d. sample distributed according to
M(1)

density, and let f0 be a specified density with respect to λ. Assume that f and f0 are bounded functions.
Fix some levels α and β in (0, 1), and let Φ̄α be one of the tests Φ̄Bonf

α and Φ̄BHL
α defined above, with

the corresponding individual levels um,α’s. For any ε in (0, 2), there exist some positive constants C1(β)
and C2(β, ε, ‖f‖∞, ‖f0‖∞) such that Pf

(
Φ̄α = 0

)
≤ β, as soon as

‖f − f0‖22 > (1 + ε) inf
m∈M

{
‖f −ΠSm(f)‖22 + F−1

m (1− um,α )

+
C1(β)

n

((√
‖f‖∞ + ‖f‖∞

)√
D +

D

n

)
+
C2(β, ε, ‖f‖∞, ‖f0‖∞)

n

}
.

Let us notice that taking a single test φm,α instead of Φ̄α, the same result holds but with F−1
m (1− um,α )

replaced by F−1
m (1− α). For a well-chosen collection {Sm, m ∈M}, these quantiles in fact only differ
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by a logarithmic factor, which means that the aggregated test behaves almost as well as the best test
among the considered collection of single tests. In this sense, the result of Theorem 1 can be viewed as
an oracle type result. Such an oracle type result, with appropriate bias and variance terms, is known
to lead to minimax adaptivity results, as proved below.

Let us consider the following classes of alternatives:

Fs,δ(R) =
{
f ∈ L2(R, λ), ∀D ∈ Dδ,

∥∥∥f −ΠS(δ,D)
(f)
∥∥∥2

2
≤ R2D−2s

}
,

for s > 0, δ in {1, 2}, and R > 0, which are linked with more classical Hölder balls or Besov bodies.
Indeed, let for all s = s1 + s2 > 0 (s1 ∈ N, s2 ∈ (0, 1]), and R > 0,

Hs(R) =
{
f : [0, 1]→ R, ∀x, y ∈ [0, 1], |f (s1)(x)− f (s1)(y)| ≤ R|x− y|s2

}
,

and for all s > 0 and R > 0,

Bs,2,∞(R) =

{
f ∈ L2(R, λ), ∀j ∈ N,

∑
k∈Z
〈f, ψj,k〉22 ≤ R22−2js

}
.

Then, for s in (0, 1], R > 0,Hs(R) ⊂ Fs,1(R), and for s > 0, R > 0, Bs,2,∞(R) ⊂ Fs,2
(
(1− 4−s)−1/2R

)
.

Corollary 1 (Fromont, Laurent, 2006). Take the same notations as in Theorem 1, and assume that
n ≥ 16. Choose D1 = D2 = {2J , 0 ≤ J ≤ log2

(
n2/(ln lnn)3

)
}. For all δ in {1, 2}, R′ > 0, and s > 0,

R > 0 such that
(ln lnn)s+1/2(lnn)2s+1/2n−1/2 ≤ R ≤ n2s ( ln lnn)−(3s+1/2) , (1.10)

there exists C (s, α, β,R′, ‖f0‖∞ ) such that

SRβ
d2

(
Φ̄α,Fs,δ(R) ∩ L∞(R′)

)
≤ C(s, α, β,R′, ‖f0‖∞)R

1
4s+1

(√
ln lnn

n

) 2s
4s+1

.

Note that when n is large enough the range (1.10) is not constraining, and all positive value for R and
s can be taken into account.
It is known from the results of [Ing93] and [Ing00] that, in the particular case where f0 = 1[0,1], the
asymptotic minimax rate of testing over a Hölder, Sobolev or Besov ball with smoothness parameter
s in L2([0, 1], λ) is of order n−2s/(4s+1) and that the loss of efficiency of order (ln lnn)s/(4s+1) is the
price to pay for adaptivity. Hence, one can say in this case that considering the collection of classes of
alternatives

F1 =
{
Fs,δ(R) ∩ L∞(R′), δ ∈ {1, 2}, R′ > 0, and s > 0, R > 0, satisfying (1.10)

}
,

in the notation and under conditions of Corollary 1, the aggregated tests Φ̄Bonf
α and Φ̄BHL

α both satisfy(
Padaptive,α,β,F1,d2

)
, for every fixed levels α and β in (0, 1).

We even prove (see [5, Corollary 2]) that for n large enough, the collection F1 can be extended to
the classes Hs(R) ∩ L∞(R′) (s,R,R′ > 0) though when s > 1, functions f in Hs(R) are not well
approximated by their projections onto the considered linear spaces.
Moreover, in this case again, adding some spaces defined from the Fourier basis to the collection
{Sm, m ∈M} allows to obtain even more general theoretical results and to significantly improve the
estimated powers of the tests in practice.

We are aware that the above results may be somewhat disappointing for readers used to multiple testing
as the Bonferroni-type aggregated tests is proved to be minimax adaptive, as well as the BHL-type tests
involving more sophisticated individual levels for the single tests. We have however seen in Lemma 3
that Φ̄BHL

α is less conservative than Φ̄Bonf
α , which also clearly appears in our simulation study, so we

guess that this could be seen here if a special attention was given to the constants appearing in the
upper bounds for the uniform separation rates.
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1.2.2 Links with model selection

In the present density model, the works on the estimation of the density f itself via model selection
by penalization are numerous (see [BM97, BBM99, Cas00, Cas03], or [Sau, Ler12] for more recent
references). It is thus now well-known that considering a collection of linear subspaces {Sm, m ∈M}
of L2(R, λ), where each Sm is generated by the basis {bl, l ∈ Lm}, f may be estimated by f̂m̂ =∑

l∈Lm̂
(
n−1

∑n
i=1 bl(Xi)

)
bl, with

m̂ = argminm∈M

−∑
l∈Lm

(
n−1

n∑
i=1

bl(Xi)

)2

+ pen(m)

 .

The penalty term pen(m) is chosen so that f̂m̂ satisfies an oracle inequality and minimax adaptivity
properties. Laurent [Lau05] proved that roughly estimating the quadratic functional θ(f) = ‖f‖22
by ‖f̂m̂‖2 does not however lead to satisfactory oracle and minimax adaptivity results. She proposes
instead the corrected estimator:

θ̂ = sup
m∈M

 1

n(n− 1)

∑
l∈Lm

n∑
i 6=j=1

bl(Xi)bl(Xj)− pen′(m)

 ,

where pen′(m) is a penalty term which is not of the same order as pen(m). This penalty depends on
the observed random variable X and a constant that remains to be precisely determined in practice. In
particular, Laurent proved that when f = 1[0,1], for some constant C > 0, E[(θ̂ − 1)2] ≤ C/n2. When
the Xi’s have their values in [0, 1], a level α aggregated test of uniformity can then be obtained with

1{θ̂−1>
√
C/(n

√
α)} = sup

m∈M
1{Tm>pen′(m)+

√
C/(n

√
α)}.

But recall that the penalty term pen′(m) depends on a constant that has to be calibrated in practice
in the estimation problem. In a testing context, calibrating the penalty amounts to calibrating some
individual critical values cm,α’s so that the aggregated test supm∈M 1{Tm>cm,α}, is of level α. Here, we
take deterministic critical values cm,α = F−1

m (1− um,α), but thinking that the penalty pen′(m) chosen
in [Lau05] depends on X, we could choose data-dependent critical values, as explained in Section 1.1.2,
or in the spirit of bootstrap based tests (see Chapter 3 and Chapter 4).

1.2.3 Extension to a composite null hypothesis based on a translation/scale family

Let us now focus on the parametric translation/scale family F0 defined by (1.8), of which the families
of Gaussian, uniform or exponential densities and translation models are typical examples.

The present testing procedures are essentially based on the idea that f belongs to F0 if and only if
there exists (µ, σ) in K such that the variables (Xi − µ)/σ have Pf0 as distribution.
Considering a collection {Sm,m ∈M} of linear subspaces of L2(R, λ) as in the above section, but with
a right-continuous and Lipschitz scaling function ϕ, let for every m inM,

T̃m(X1, . . . , Xn) = inf
(µ,σ)∈K

Tm

(
X1 − µ
σ

, . . . ,
Xn − µ
σ

)
.

Since the bl’s (l in Lm), generating Sm, are right-continuous, the infimum over (µ, σ) in K can be
replaced by the infimum over (µ, σ) in K ∩Q2 so that T̃m(X1, . . . , Xn) is indeed a random variable.

Note that the density of the variables (Xi − µ)/σ is σf(σ . + µ) so T̃m(X1, . . . , Xn) is a reasonable
estimator of

inf
(µ,σ)∈K

σ

∥∥∥∥f − 1

σ
f0

(
.− µ
σ

)∥∥∥∥2

2

,
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which is closely related to the distance d2 (f,F0 ).
Given a fixed level α in (0, 1), we define the collection of tests

Φ̃BHL
α =

{
1{T̃m(X1,...,Xn)>F−1

m (1−um,α)}, m ∈M
}
,

where F−1
m still denotes the quantile function of the distribution of Tm when f = f0, and where um,α

is chosen as in ΦBHL
α above that is

um,α = sup
{
u, Pf0

(
∃m ∈M, Tm > F−1

m (1− u)
)
≤ α

}
.

This enables to define according to (1.1) the corresponding aggregated test:

¯̃ΦBHL
α = sup

m∈M
1{T̃m(X1,...,Xn)>F−1

m (1−um,α)}.

This test satisfies (Plevel,α ), based on the fact that if f belongs to F0, there exists (µ, σ) in K such
that f = f0((.− µ)/σ)/σ, and

T̃m(X1, . . . , Xn) ≤ Tm
(
X1 − µ
σ

, . . . ,
Xn − µ
σ

)
.

Let us distinguish a particular case, based on the following invariance property:

∀ (µ, σ) ∈ K, T̃m(X1, . . . , Xn) = T̃m

(
X1 − µ
σ

, . . . ,
Xn − µ
σ

)
, (1.11)

satisfied for instance when K = R× (0,+∞), K = {0} × (0,+∞), or K = R× {1}.
When (1.11) holds, F−1

m (1− um,α) in ¯̃ΦBHL
α should be replaced by F̃−1

m (1− ũm,α), where F̃−1
m denotes

the quantile function of the distribution of T̃m(X1, . . . , Xn) when f = f0, and

ũm,α = sup
{
u, Pf0

(
∃m ∈M, T̃m(X1, . . . , Xn) > F̃−1

m (1− u)
)
≤ α

}
.

Such a choice leads to a less conservative test, but still guarantees that the test satisfies (Plevel,α ) as
soon as (1.11) holds.

Minimax adaptivity properties of our testing procedures are investigated in the case where K =
[µ, µ]× [σ, σ], µ, µ, σ, σ being real numbers such that σ > 0, f0 is a given bounded density, satisfying
some particular Lipschitz condition, and F0 satisfies a L2-entropy with bracketing condition, which
holds for instance if F0 is a family of Gaussian densities, exponential densities, and uniform densities.
We assume that there exist v > 0 and c > 0 such that for all k ≥ 2,

E
[
|Xi|k

]
≤ k!

2
vck−2,

and that f is bounded. Let n be large enough so that n ≥ 3 and n2(µ− µ) ∧ (σ − σ) ≥ 2.
Consider now for all s > 0, and R > 0 the class:

F̃s,2(R) =
{
f ∈ L2(R, λ), ∀D ∈ D2, ∀(µ, σ) ∈ K,

‖σf(σ.+ µ)−ΠS(2,D)
(σf(σ.+ µ)) ‖22 ≤ R2σ1+2sD−2s

}
.

Note that there exists some constant κ > 0 such that Bs,2,∞(R) ⊂ F̃s,2
(
κ1/2(1− 4−s)−1/2R

)
.

We prove in [1] and [5], that whenD1 ⊂ {2J , 0 ≤ J ≤ log2(n2)} andD2 = {2J , 0 ≤ J ≤ log2(n2/ log3 n)},
for all R′ > 0, and s > 0, R > 0 satisfying

( lnn)s+1/2 n−1/2 ≤ R ≤ n2s ( lnn)−(3s+1/2) ,
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there exists C = C(µ, µ, σ, σ, ‖f0‖∞, v, c, α, β, s,R′) such that

SRβ
d2

(
¯̃ΦBHL
α , F̃s,2(R) ∩ L∞(R′)

)
≤ CR

1
4s+1

(√
lnn

n

) 2s
4s+1

.

The above upper bound corresponds, up to a logarithmic factor, to the upper bound for the goodness-
of-fit tests when F0 = {f0 } obtained in Corollary 1. As explained at the beginning of this section, we
do not know whether this logarithmic factor could be avoided.
Considering the present composite null hypothesis may amount to considering, in addition to the
classical adaptivity with respect to the smoothness of the density, which typically entails a loss of
efficiency of the order of a (ln lnn)1/2 factor, another kind of adaptivity, this one, with respect to the
unknown parameters (µ, σ) under (H0 ). This could explain that the usual extra (ln lnn)1/2 factor is
here replaced by an extra (lnn)1/2 factor. Similar phenomena are observed in [4] (see Section 1.3) and
[CD12] for instance, where the issue of the adaptivity with respect to the unknown period, and the
unknown translation parameter are respectively treated in regression setups. Such a logarithmic factor
also appears in minimax separation rates evaluated with the L∞-metric (see [LT00] for instance).

1.2.4 Concentration inequalities: basic tools for nonasymptotic properties

Although asymptotic results on the evaluation of minimax separation rates are here cited, and used
to justify the minimax adaptivity properties of our tests, the obtained results and in particular our
upper bounds for the uniform separation rates are of nonasymptotic nature. They indeed hold for a
fixed sample size n (as large as it is), highlighting the dependence of these uniform separation rates
with respect to the radius R of the considered classes of alternatives. The fundamental tools to obtain
such nonasymptotic results are concentration inequalities.
As the test statistics we introduce are constructed from the estimation of quadratic and linear func-
tionals of f , they are naturally based on U -statistics of order 2, and linear statistics. More precisely,
denoting by Pn the empirical process associated with the sample Xn, the test statistic Tm can be
decomposed as

Tm =
1

n(n− 1)

n∑
i 6=j=1

∑
l∈Lm

(bl(Xi)− 〈f, bl〉2 ) (bl(Xj)− 〈f, bl〉2 )

+ 2

∫
R

(ΠSm(f)− f0 ) (dPn − dPf ) + ‖f − f0‖22 − ‖f −ΠSm(f)‖22 ,

where the first term is a U -statistic of order 2 and the second term a linear statistic.
In order to precisely control Tm as well as its quantile function, we therefore use the concentration
inequalities for U -statistics and linear statistics of [HRB03] and [BM98] respectively.
For the problem of testing that f belongs to a translation/scale parametric family, we have to control

T̃m(X1, . . . , Xn) = − sup
(µ,σ)∈K

(
−Tm

(
X1 − µ
σ

, . . . ,
Xn − µ
σ

))
.

Assuming that K is compact enables to consider a finite and bounded grid of points in K, and to
reduce the problem to a control of a supremum over this finite grid on the one hand, to a control of
the supremum of the difference

Tm

(
X1 − µ1

σ1
, . . . ,

Xn − µ1

σ1

)
− Tm

(
X1 − µ
σ

, . . . ,
Xn − µ
σ

)
,

on a compact set [µ1, µ2]× [σ1, σ2] of K as small as possible. The first supremum is evaluated by using
concentration inequalities for U -statistics and linear statistics again, while the second one is evaluated
by using a Dvoretsky-Kiefer-Wolfowitz type exponential inequality in [BLM99], involving entropy with
bracketing arguments.
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1.3 Periodic signal detection

This work, in collaboration with Céline Lévy-Leduc [4], was initially motivated by an application in
optronics, more precisely in laser vibrometry, where the model that has to be considered is the following
Gaussian periodic fixed design regression model.

M(1)
regression X = Xn = (X1, . . . , Xn)′ has a distribution Pf defined by: Xi = f (i/n)+σεi for i in

{1, . . . , n}, f being an unknown real valued periodic function (called the signal), the
εi’s being independent standard Gaussian random variables, and σ being a positive
real number.

We are interested in the classical signal detection problem, that is the problem of testing

(H0 ) f = 0 against (H1 ) f 6= 0.

Whereas this problem had already been investigated from the general nonasymptotic minimax adaptiv-
ity point of view in [Bar02, BHL03], we here focus on the best possible use of the periodicity properties
of the signal. Measuring accurately the impact of such properties is therefore the first purpose of the
present work. The second purpose is to construct a minimax adaptive test, which takes the period-
icity of the signal into account, just keeping in mind that in applications, the period of the signal is
unknown, as well as the variance σ2 of the Gaussian noise.

The interval [0, 1] is endowed with the measure µn given by µn = n−1
∑n

j=1 δj/n, δj/n being the Dirac
measure at j/n, and L2([0, 1], µn) with its usual norm denoted by ‖.‖2 and given by

∀g ∈ L2([0, 1], µn), ‖g‖22 =
1

n

n∑
i=1

g2 (i/n) .

The corresponding metric is denoted by d2.

1.3.1 Minimax separation rates over periodic Sobolev balls

Throughout this section, as a preliminary step, the variance σ2 is assumed to be known.

Given α in (0, 1) and β in (0, 1−α), we investigate the minimax separation rates with prescribed error
rates α and β for the metric d2, over periodic Sobolev balls defined as follows. For k in {1, . . . , n}, s
in N \ {0} and R > 0, let:

Ss,2,k(R) =
{
f ∈ Cs([0, 1]), f is periodic with period k/n,

∥∥f (s)
∥∥

2,k/n
≤ R

}
, (1.12)

where Cs([0, 1]) denotes the set of functions f from [0, 1] with a continuous s−th order derivative
denoted by f (s), and for θ in (0, 1), for g in L2([0, 1], λ), ‖g‖22,θ = θ−1

∫ θ
0 g

2dλ.

We first obtain the following lower bound.

Theorem 2 (Fromont, Lévy-Leduc, 2006). Given some fixed levels α in (0, 1) and β in (0, 1 − α),
there exist an absolute constant κ in (0, 1] and C(s, α, β) such that for every integer k in [κ−1, n/2],

mSRα,β
d2

(Ss,2,k(R)) ≥ C(s, α, β)

R 1
4s+1

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

∧

(√
kσ2

n

) 1
2

∧R
(
k

n

)s .

In particular, for all k in [κ−1, n/2], if

σn−1/2

(
k

n

)−s
≤ R ≤ σns−1/4

(
k

n

)1/4

,
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then

mSRα,β
d2

(Ss,2,k(R)) ≥ C(s, α, β)R
1

4s+1

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

.

To establish the optimality of this lower bound, we construct a single test of (H0 ) against (H1 ), whose
uniform separation rate over Ss,2,k(R) is of the same order as the lower bound, that is which is minimax
over Ss,2,k(R).

For any function g defined on [0, 1], we set g = (g(1/n), g(2/n), . . . g(1))′, and for any vector v =
(v1, . . . , vn)′ in Rn, we introduce

||v||2Rn =
1

n

n∑
i=1

v2
i .

Our minimax test is based on the estimation of
∥∥ΠSm

(
f
)∥∥

Rn , where Sm is a subspace of Rn and ΠSm

is the orthogonal projection over Sm with respect to the Euclidean norm of Rn or with respect to ‖.‖Rn .
Considering the periodicity property of the signal f , a natural choice for Sm is a space based on the
Fourier basis on the interval [0, θ] (θ > 0) defined by

pθ,0(x) = 1,

pθ,2l′−1(x) =
√

2 cos (2πl′x/θ) , ∀l′ ≥ 1,

pθ,2l′(x) =
√

2 sin (2πl′x/θ) , ∀l′ ≥ 1.

(1.13)

For allD in N\{0}, we consider the subspace SD of Rn spanned by the vectors
{
pk/n,l, l = 0, . . . , D − 1

}
,

and we introduce
φα = 1{

n‖ΠSDk
(Y )‖2Rn>F

−1
Dk

(1−α)σ2
},

where Dk = k ∧ inf
{
D ∈ N, D ≥ ((k/n)2snR2/σ2)2/(4s+1)

}
, and F−1

Dk
stands for the quantile function

of the χ2 distribution with Dk degrees of freedom. Then φα obviously satisfies (Plevel,α ) and if

σn−1/2

(
k

n

)−s
≤ R ≤ σn

8s2−6s−1
8s

(
k

n

)− 2s+1
8s

, (1.14)

then

SRβ
d2

(φα,Ss,2,k(R)) ≤ C(α, β)R
1

4s+1

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

.

Such a result is of course not useful at all in practice since the test constructed here clearly depends
on s which is not known in applications. This test is thus only minimax over any given Ss,2,k(R), but
not minimax adaptive. It is nevertheless important from a theoretical point of view, since assuming
that k belongs to [κ−1, n/2] and that the radius R belongs to the range given by (1.14), it allows to
conclude, combined with Theorem 2, that the minimax separation rate mSRα,β

d2
(Ss,2,k(R)) is of order

R
1

4s+1

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

.

Note that from an asymptotic point of view, where n tends to ∞ and k/n to a fixed period τ , since s
is a positive integer, the range of (1.14) is not constraining: any positive R is allowed.
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1.3.2 Minimax adaptive tests

From now on, we consider more realistic contexts where the variance σ2 is not assumed to be known
anymore, and where we aim at constructing minimax adaptive tests.
As the model M(1)

regression is a particular case of the general regression model considered by Baraud,
Huet and Laurent in [BHL03], we turn to the minimax adaptive aggregated test they propose.
Let {Sm,m ∈M} be a collection of linear subspaces of Rn, each Sm being of dimension Dm.
For every m inM, and every u in (0, 1), we introduce the classical level u Fisher test of

(H0,m ) ΠSm

(
f
)

= 0 against (H1,m ) ΠSm

(
f
)
6= 0,

defined by
φm,u = 1{ (n−Dm)‖ΠSm (X)‖2Rn

Dm‖X−ΠSm
(X)‖2Rn

>F−1
Dm,n−Dm (1−u)

},
where F−1

Dm,n−Dm is the Fisher quantile function with Dm and n−Dm degrees of freedom.
From these single Fisher tests, given a fixed level α in (0, 1), as described in Section 1.1.2, Baraud,
Huet and Laurent introduce the collection of tests ΦBHL

α , and the corresponding aggregated test Φ̄BHL
α

defined by (1.4) and (1.1).

We here use this aggregated test by taking particular collections of linear subspaces {Sm,m ∈ M}
fitting the periodicity assumption on the signal.

Periodic signal detection when the period is known. Let us assume that n ≥ 3 and that f is
periodic with period k/n for k in {3, . . . , n}. We consider the above aggregated test Φ̄BHL

α with:

— M =
{

2J , J ∈ {0, . . . , blog2(k/2)c}
}
,

— {Sm, m ∈M}, where for m = D in M, SD is still the linear subspace of Rn spanned by the
vectors

{
pk/n,l, l ∈ {0, . . . , D − 1}

}
.

Proposition 1 (Fromont, Lévy-Leduc, 2006). For α and β in (0, 1), assume that n is large enough so
that α ≥ e−n/20 log2(n) and β ≥ 2e−n/42. For all s in N \ {0}, there exists C(s, α, β) such that for all
R > 0 satisfying

σn−1/2

(
k

n

)−s
(ln ln k)s+1/2 ≤ R ≤ σn

8s2−6s−1
8s

(
k

n

)− 2s+1
8s

(ln ln k)1/4, (1.15)

then

SRβ
d2

(
Φ̄BHL
α ,Ss,2,k(R)

)
≤ C(s, α, β)R

1
4s+1

(
k

n

) s
4s+1

(√
ln ln kσ2

n

) 2s
4s+1

.

According to the above results, this means that the testing procedure is rate optimal, up to a possible
(ln ln k)1/2 factor, over all the Sobolev balls Ss,2,k(R) such that (1.15) holds simultaneously. In view
of the results due to Spokoiny [Spo96] in the Gaussian white noise model for Besov balls and Baraud
[Bar02] in the Gaussian sequence model for families of nested ellipsoids, we can rightfully think that
this loss of efficiency is unavoidable when we deal with an adaptive procedure. In this sense, one can
say that considering

F1 =
{
Ss,2,k(R), s > 0, R > 0 satisfying (1.15)

}
,

in the notation and under conditions of Proposition 1, Φ̄BHL
α satisfies

(
Padaptive,α,β,F1,d2

)
.
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Periodic signal detection when the period is unknown. We now consider the most general
setup where the period of the signal is unknown. We consider the above aggregated test Φ̄BHL

α again,
but this time with:

— M =
{

(k, 2J), k ∈ {2, . . . , n}, J ∈ {0, . . . , blog2(k/2)c}
}
,

— {Sm, m ∈M}, where for m = (k,D) inM, S(k,D) is the linear subspace of Rn spanned by the
vectors

{
pk/n,l, l ∈ {0, . . . , D − 1}

}
.

To avoid any confusion, the test is here denoted by ¯̃ΦBHL
α . The following result gives upper bounds for

the uniform separation rates of this test over some Sobolev balls described below.
Assume that n ≥ 3. For s ∈ N \ {0}, R > 0 and τ1 ∈ [2/n, 1], let

S̃s,2,τ1(R) =
{
f ∈ Cs([0, 1]), f is periodic with period τ(f) ∈ [2/n, τ1],

∥∥f (s)
∥∥

2,τ(f)
≤ R

}
.

Proposition 2 (Fromont, Lévy-Leduc, 2006). For α and β in (0, 1), assume that n is large enough so
that α ≥ e−n/20 log2(n!) and β ≥ 2e−n/42. For all s in N \ {0}, there exists C(s, α, β) such that for all
τ1 in [2/n, 1], and R > 0 satisfying

στ−s1 (lnn)s+1/2n−1/2 ≤ R ≤ στ
−4s2+4s+1

4s
1 n1/8s(lnn)−

2s+1
8s , (1.16)

then

SRβ
d2

(
¯̃ΦBHL
α , S̃s,2,τ1(R)

)
≤ C(s, α, β)R

1
4s+1 τ

s
4s+1

1

(√
lnnσ2

n

) 2s
4s+1

.

The upper bound for the uniform separation rate of the test over S̃s,2,τ1(R) when τ1 and R satisfy (1.16)
is similar to the one obtained when the period of f is known to be equal to k/n (see Proposition 1), but
with a loss of efficiency of the order of a (lnn)1/2 factor instead of (ln ln k)1/2. This is technically due
to the fact that we choose a collection {Sm, m ∈M} which is rich enough to ensure that it contains,
for any function f with period τ(f) in [2/n, 1], some subspace Sm close enough to f . We do not know
if the consequent extra (lnn)1/2 factor is unavoidable, as explained in Section 1.2 where the aggregated
test proposed for the problem of testing that f belongs to a translation/scale parametric family shows
a similar behavior.

1.3.3 Links with model selection

The aggregated test proposed by Baraud, Huet and Laurent [BHL03] is closely related to the estimation
of quadratic functionals, such as ‖f‖22, by Laurent and Massart [LM00].
Considering a collection of linear subspaces {Sm, m ∈M} of Rn, Laurent and Massart propose to
estimate θ(f) = ‖f‖22 by

θ̂ = sup
m∈M

(
‖ΠSm(X)‖2Rn − pen(m)

)
,

where pen(m) is a well-chosen deterministic penalty term, leading to oracle inequalities and minimax
adaptivity properties for θ̂.
If the variance σ2 is equal to 1, when f = 0, one furthermore has that E

[
θ̂2
]
≤ C/n2 for some C > 0.

A level α aggregated test of (H0 ) against (H1 ) can thus be obtained with

1{θ̂>
√
C/(n

√
α)} = sup

m∈M
1{‖ΠSm (X)‖2Rn>pen(m)+

√
C/(n

√
α)}.

Since the penalty pen(m) depends on a constant that has to be calibrated in practice in the estimation
problem, it is, in the present testing context, more appropriate to directly calibrate some individual
critical values cm,α’s so that the aggregated test supm∈M 1{‖ΠSm (X)‖2Rn>cm,α}, is exactly of level α.
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When f = 0, the distribution of ‖ΠSm(X)‖2Rn is here a simple chi-square distribution, so calibrating
the critical values becomes rather easy. This idea is then generalized to the case where the variance
σ2 is unknown and thus has to be estimated, at the price that ‖ΠSm(X)‖2Rn is replaced by the Fisher
distributed variable (n−Dm)‖ΠSm(X)‖2Rn/

(
Dm‖X−ΠSm(X)‖2Rn

)
.

1.3.4 Experimental results

Simulation study. The simulation study that we presented in [4] was specifically dedicated to
the evaluation, from a practical point of view, of the performances of the proposed test when the
period of the signal is unknown. In particular, we aimed at highlighting the sensitivity of the test
to the periodicity assumption. To do this, we compared the estimated sizes and powers under various
alternatives of the present test with the ones of the test initially proposed by Baraud, Huet and Laurent
[BHL03], which does not take the periodicity assumption into account.
As expected from the theoretical study, our test show significant improvements as compared to the
test of [BHL03], and this is particularly striking when the number of significant Fourier coefficients (or
harmonics) in the expansion of the periodic signal alternative is large.

Application in laser vibrometry. This study was motivated by a real practical issue from the
Thalès Optronique company, which partially supported it.
Consider targets vibrating under the effect of the vibrations of their motor for instance. One of the
most topical issues in optronics is the identification of such a target, through the determination of
some of its vibration parameters, like its vibration period. The use of coherent lasers has provided
some progress in this field. After emission of a continuous coherent laser wave, reflection of it on a
target composed of reflectors vibrating at the same frequency Fs (that is 1/Fs is the vibration period),
reception and demodulation, one receives a complex valued signal of the form:

Xj = f(j/n) + σ(ε1,j + i ε2,j) for j ∈ {1, . . . , n}. (1.17)

Here, i2 = −1, the ε1,j ’s and the ε2,j ’s are independent standard Gaussian random variables and f is
of the form

f(x) =

M∑
m=1

am exp

[
4iπγm
λ

cos (2πFsx)

]
, (1.18)

when the target consists of M (which may be large: M ≈ 200) punctual reflectors, am being the
amplitude of the signal reflected by the reflector number m.
The issue of the estimation of the frequency Fs has been treated by Céline Lévy-Leduc and co-authors
(see for instance [CLLM06] and references therein).

Our concern in the present work is the target detection step, which has to precede the estimation
phase. Of course, at this step, the frequency Fs is unknown, and this is why we developed the above
last periodic signal detection tests, that are easily adapted to the present complex valued Gaussian
regression model.

An example of synthetic signal arising in laser vibrometry is displayed in [4]. In particular, one can see
that for a corrupted signal with a signal to noise ratio SNR = 10 ln

(∑M
m=1 a

2
m/2σ

2
)
equal to −27dB,

the high level of noise makes the original signal and its harmonics visually undetectable.

We consider an alternative which corresponds to the signal (1.18) where M = 1, Fs = 48Hz, γ1 =
35×10−6, λ = 1.5×10−6, with σ2 = 1, and a number of observations n = 218. For α = 0.05, estimated
powers are presented for various SNR in Table 2 of [4]. It is shown that for an SNR = −27 dB, our
test has an estimated power equal to 0.67, and for an SNR = −24 dB, which is still reasonable for
the present application, it has an estimated power equal to 0.99. As a comparison, in this last case,
the test of Brockwell and Davis [BD13], which is a classical test for periodic signal detection, has an
estimated power of 0.06.
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1.3.5 Sketch of proof

We here draw a sketch of proof for the lower bound in Theorem 2. For sake of simplicity in the notations,
the dependencies on α, β, k and σ (which are fixed here) are not always specified.
The idea of the proof is rather general and can be summarized as constructing, for the Sobolev ball
Ss,2,k(R), a class of alternatives Ω(r∗) ⊂ {f, d2(f, 0) = ‖f‖2 = r∗ }, with r∗ as large as possible (so
that the final lower bound is more likely to be sharp), included in Ss,2,k(R), but for which

inf
φα satisfying (Plevel,α )

sup
f∈Ω(r∗)

Pf (φα = 0) ≥ β.

1. The first step consists in introducing a collection of classes of alternatives ΩD(r) for D in some
Dk ⊂ {1, . . . , k} , r > 0, given by

ΩD(r) =

{
f, f(x) =

D∑
l=1

βlϕD

(
nDx

k
− l + 1

)
, βl ∈ R, ‖f‖2 = r

}
,

where ϕD is a D-periodic function in C∞(R), positive on its support which is included in
∪u∈Z(uD, uD + 1).

2. The second and main step then consists in determining, for all D in Dk, a maximal radius rD
such that for all r ≤ rD, then

inf
φα satisfying (Plevel,α )

sup
f∈ΩD(r)

Pf (φα = 0) ≥ β.

This step is based on Bayesian techniques developed by Ingster [Ing93]: the idea is to find a
probability measure µr on ΩD(r) (the prior) such that r ≤ rD implies that

E0

[
L2
µr(X)

]
≤ 1 + 4(1− α− β)2,

where:
— Pµr =

∫
Pfdµr(f),

— Lµr(x) =
dPµr
dP0

(x),
— E0 is the expectation with respect to P0.
We then use the following inequality (see [Bar02] for instance):

inf
φα satisfying (Plevel,α )

sup
f∈ΩD(r)

Pf (φα = 0) ≥ 1− α− 1

2

(
E0

[
L2
µr(X)

]
− 1
)1/2 ≥ β.

To construct such a prior distribution µr, we consider fξ(x) = λ
∑D

l=1 ξlϕD (nDx/k − l + 1)
where ξ = (ξ1, . . . , ξD) is a sequence of i.i.d. Rademacher random variables (that is random
variables taking the values 1 or −1 with probability 1/2), and λ is chosen so that ||fξ||2 = r.

3. The third and final step is to determine for all D in Dk the maximal radius rD,s,R ≤ rD so that
ΩD(rD,s,R) is included in Ss,2,k(R), and to take Ω(r∗) = ΩD∗(rD∗,s,R) with

D∗ = argmaxD∈DkrD,s,R.
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1.4 Tests of homogeneity for Poisson processes

As explained in the nice introduction of the book of Daley and Vere-Jones, historically the theory of
point processes seems to go back to the study of the first life tables and renewal processes, and of
counting problems with the work of Poisson [Poi37]. Since recently, point processes are largely encoun-
tered in the genetics and neuroscience literature. At the origin of this work, we were actually interested
in some applications in genetics, where a point process of the real line may represent occurrences of
words or motifs on the DNA sequence (see [RRS05] for instance). In this context, it is particularly
important to be able to detect abnormal behaviors.
Assuming that the point process is a Poisson process on a bounded interval, which has been commonly
admitted as a realistic model for occurrences of motifs on the DNA sequence, such an abnormal
behaviors detection question may be viewed as a problem of testing the homogeneity of the Poisson
process. More precisely, let us consider the following Poisson process model:

M(1)
Poisson X is a (possibly inhomogeneous) Poisson process observed on the interval X = [0, 1],

with intensity f , with respect to some measure µ on [0, 1] such that dµ = ndλ for a
fixed positive integer n.

In this model, we focus on the problem of testing

(H0 ) f ∈ F0 against (H1 ) f 6∈ F0,

where F0 is the set of constant functions on X.
Notice that the present problem of testing is of course not dedicated to the only field of DNA sequences
analysis. This study can also be used in all the other frameworks where the Poisson process model
is realistic (and these frameworks are numerous, going from economics and finance to sport or music
analysis for instance).

Let X be the set of the possible values for finite point processes on X, that is the set of the countable
subsets of X. For all x in X , all t in R, let us define

Nx(t) =

∫
X
1{u≤t}dNx(u), (1.19)

where dNx stands for the point measure associated with x, given for all measurable real-valued function
g by ∫

X
g(u)dNx(u) =

∑
u∈x

g(u). (1.20)

With such notation, remark that #X = NX(1).

The modelM(1)
Poisson has in fact close links with the density modelM(1)

density, and can even be defined
via these links: X may be introduced as a set of random variables X1, . . . , XNX(1) observed in [0, 1],
such that

— the random variable NX(1) has a Poisson distribution with parameter
∫
X fdµ = n

∫
X fdλ,

— given NX(1) = n0, (X1, . . . , XNX(1)) is conditionally distributed as a sample of n0 i.i.d. random
variables, with density f/

∫
X fdλ with respect to the Lebesgue measure λ.

Given NX(1) = n0, testing (H0 ) against (H1 ) therefore amounts to testing that f = 1[0,1] that is
testing the uniformity on [0, 1] of the Xi’s, based on the observation of (X1, . . . , Xn0). The minimax
adaptive tests introduced in Section 1.2.1 can thus be used in practice, as well as every test of uniformity
on [0, 1] in a density model, like the historical one of Kolmogorov-Smirnov for instance. However,
studying such tests from the minimax point of view raises the difficulty of deconditioning the event
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NX(1) = n0, and separation rates are not so directly obtained. We thus turned towards more natural
unconditional tests, considering the Poisson process by itself and using its convenient properties.
The present problem of testing the homogeneity of a Poisson process has been widely investigated both
from theoretical and practical points of view (see Bain, Engelhardt, and Wright [BEW85] or Cohen
and Sackrowitz [CS93] for a survey and Bhattacharjee, Deshpande, and Naik-Nimbalkar [BDNN04] for
a more recent work). In these papers, the alternative intensities are monotonous. Another related topic
is the problem of testing the hypothesis that a point process is a Poisson process with a given intensity.
We can cite for instance the papers by Fazli and Kutoyants [FK05] where the alternative is also a
Poisson process with a known intensity, Fazli [Faz07] where the alternatives are Poisson processes with
one-sided parametric intensities, or Dachian and Kutoyants [DK06], where the alternatives are self-
exciting point processes. The paper by Ingster and Kutoyants [IK07] is the closest one to the present
work. The alternatives considered by Ingster and Kutoyants are Poisson processes with nonparametric
intensities in a Sobolev or Besov space Bs,2,q(R) with 1 ≤ q < +∞ and known smoothness parameter
s: the minimax rate of testing with respect to the L2-metric over such a Sobolev or Besov ball is proved
to be of order n−2s/(4s+1), which matches the classical minimax rate of testing in the density model.
However, in certain practical cases, such smooth alternatives cannot be considered. For instance, ad-
mitting that the Poisson process represents occurrences of motifs on the DNA sequence, its intensity
may burst at a particular position of special interest for the biologist (see [GS05] for more details). The
present problem thus deals with the question: "how can we distinguish a Poisson process with constant
intensity from a Poisson process whose intensity has some small localized spikes?". This question had
already been partially considered in a precursory work by Watson [Wat78], but without any precise
study of the second kind error rate of the tests.
So, based on these reflexions, assuming that f belongs to L2(X, λ), we constructed in [7] new minimax
adaptive tests of (H0 ) against (H1 ), considering classes of smooth alternatives such as Besov bodies,
but also some classes of alternatives that may be much less smooth, such as weak Besov bodies that
were, until this work, only studied in some estimation contexts (see [Riv02, Riv06]).
Since the minimax separation rates over such weak Besov bodies were not known, our purpose was first
to provide lower bounds for these minimax separation rates, and then to construct level α minimax
adaptive tests, based on the aggregation principle. A phenomenon, completely new with respect to
the anterior minimax testing literature, then appeared: the minimax separation rates over particular
subsets of weak Besov bodies are so large that there is no additional price to pay for adaptivity on the
one hand (but such a phenomenon already occurs when the L2-metric is replaced by the L∞-one), and
that they are of the same order as the minimax estimation rates on the other hand.

1.4.1 Lower bounds for the minimax separation rates over Besov bodies

Let ‖.‖2, d2 and 〈., .〉2 respectively denote the classical L2 norm, metric and scalar product of L2(X, λ).
Let us introduce the Haar basis of L2([0, 1], λ), {ϕ0, ψ(j,k), j ∈ N, k ∈ {0, . . . , 2j − 1}} with ϕ0(x) =
1[0,1](x), and

ψ(j,k)(x) = 2j/2ψ(2jx− k), (1.21)

where ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x).
We introduce the Besov bodies defined for s > 0, R > 0 by

Bs,2,∞(R) =

{
f = α0ϕ0 +

∑
j∈N

2j−1∑
k=0

α(j,k)ψ(j,k) ≥ 0, ∀j ∈ N,
2j−1∑
k=0

α2
(j,k) ≤ R

22−2js

}
. (1.22)
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The weak Besov bodies are defined for s′ > 0 and R′ > 0 by

wBs′(R′) =

{
f = α0ϕ0 +

∑
j∈N

2j−1∑
k=0

α(j,k)ψ(j,k) ≥ 0, ∀t > 0,
∑
j∈N

2j−1∑
k=0

α2
(j,k)1

{
α2

(j,k)
≤t
} ≤ R′2t 2s′

2s′+1

}
.

(1.23)

Theorem 3 (Fromont, Laurent, Reynaud-Bouret, 2011). Assume that R > 0, R′ > 0, and R′′ ≥ 2,
and fix some levels α and β in (0, 1) such that α+ β ≤ 0.59.
(i) If s ≥ (s′/2) ∨ (s′/(2s′ + 1)), then

lim inf
n→+∞

n
2s

4s+1mSRα,β
d2

(Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′)) > 0.

(ii) If s < s′/2 and s′ > 1/2, then

lim inf
n→+∞

( n

lnn

) s′
2s′+1

mSRα,β
d2

(Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′)) > 0.

(iii) If s < s′/(2s′ + 1) and s′ ≤ 1/2, then

lim inf
n→+∞

(
n

1
4 ∧ n

2s′
(4s+1)(2s′+1)

)
mSRα,β

d2
(Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′)) > 0.

The lower bounds in (i) coincide with the minimax separation rates over Besov spaces, obtained by
Ingster and Kutoyants [IK07] in a slightly different Poisson process model, and therefore also match
with the rates in the more classical density model. As seen in Section 1.2, such rates can be achieved in
the density model by some aggregated tests, closely linked with model selection. This is the principle
of our first aggregated test. One now should focus on the lower bounds obtained in (ii), which are in
fact equal to the minimax estimation rates on the maxisets of the thresholding estimation procedure,
namely Bκs′/(2s′+1),2,∞(R) ∩ wBs′(R′) with some constant κ < 1 (see [KP00, Riv06, RBR10]). This
means that it is at least as difficult to test as to estimate over such classes of functions. Following
the idea that the minimax estimation rates on these classes are achieved by thresholding rules, the
principle of our second aggregated test will be based on thresholding methods.

1.4.2 Minimax adaptive tests

Let us consider a collection of subspaces {Sm m ∈M} of L2([0, 1], λ) such that for m in M, Sm is
spanned by {ϕ0, ψj,k, (j, k) ∈ Lm }, where Lm is a subset of

{
(j, k), j ∈ N, k ∈

{
0, . . . , 2j − 1

}}
.

Following the aggregation principle described in Section 1.1.2, we construct a collection of tests of

(H0,m ) d2 (ΠSm(f),F0 ) = 0 against (H1,m ) d2 (ΠSm(f),F0 ) 6= 0,

for m inM, where ΠSm denotes the orthogonal projection with respect to 〈., .〉2 onto Sm.
Noticing that for each m inM, d2

2 (ΠSm(f),F0 ) =
∑

(j,k)∈Lm〈f, ψj,k〉
2
2, a reasonable test statistic for

(H0,m ) against (H1,m ) is given by the unbiased estimator of d2
2 (ΠSm(f),F0 ):

Tm =
1

n2

∑
(j,k)∈Lm

NX(1)∑
i 6=i′=1

ψ(j,k)(Xi)ψ(j,k)(Xi′). (1.24)

The construction of the critical value corresponding to each Tm depends on the chosen collection
{Sm, m ∈M}. In particular, two main different choices are made for the considered collection of
subspaces, leading to two different methods for the construction of the critical values.
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As the distribution of Tm is not free from f under (H0 ), both methods are nevertheless based on an
instrumental conditional distribution, as described in Section 1.1.2, using the statistic Z = NX(1).
More precisely, both methods are based on the argument that under (H0 ), for any n0 in N\{0}, given
NX(1) = n0, Tm is conditionally distributed as

T̃ (n0)
m =

1

n2

∑
(j,k)∈Lm

n0∑
i 6=i′=1

ψ(j,k)

(
X̃i

)
ψ(j,k)

(
X̃i′

)
,

where
(
X̃1, . . . , X̃n0

)
is an i.i.d. sample from the uniform distribution on [0, 1].

Therefore, denoting by q(n0)
m the quantile function of the distribution of T̃ (n0)

m , the critical value asso-
ciated with Tm is chosen as

q(NX(1))
m

(
1− u(NX(1) )

m,α

)
,

where u(NX(1) )
m,α has to be correctly calibrated.

Collection of nested spaces. LetM be a subset of N\{0}, and for m = J inM, LJ =
{

(j, k), j ∈
{0, . . . , J − 1}, k ∈ {0, . . . , 2j − 1}

}
, so that SJ is spanned by

{
ϕ0, ψj,k, j ∈ {0, . . . , J − 1}, k ∈

{0, . . . , 2j − 1}
}
.

Then, we consider the test Φ̄nested
α aggregating as in (1.1) the tests

1{
Tm>q

(NX(1) )
m

(
1−u(NX(1) )

m,α

)}, (1.25)

where

u(n0)
m,α = wm sup

{
u, P(H0 )

(
∃m ∈M, Tm > q(n0)

m (1− wmu)
∣∣∣NX(1) = n0

)
≤ α

}
. (1.26)

This test satisfies (Plevel,α ), and in [7], it is proved to satisfy an oracle type result. Since any function
f in Bs,2,∞(R) is well approximated by its projections onto the chosen nested subspaces, in the sense
that ‖f −ΠSJ (f)‖22 ≤ C(s)R22−2Js, this oracle type result leads to the following theorem.

Theorem 4 (Fromont, Laurent, Reynaud-Bouret, 2011). Given α and β in (0, 1), let Φ̄nested
α be the

test defined above with M =
{

1, . . . ,
⌊
log2(n2/(ln lnn)3)

⌋}
and wm = 1/#M for every m in M. For

every s > 0, there exist C(s) and C(α, β,R,R′′, s) such that if n > C(s), then

SRβ
d2

(
Φ̄nested
α ,Bs,2,∞(R) ∩ L∞(R′′)

)
≤ C(α, β,R,R′′, s)

(√
ln lnn

n

) 2s
4s+1

.

Note that a more precise bound is given in [7], in particular giving the precise dependence with respect
to the radius R of the Besov body Bs,2,∞(R).

Collection of nonnested two-dimensional spaces. Let M be now defined from a fixed integer
J̄ ≥ 1 by M =

{
(j, k), j ∈ {0, . . . , J̄ − 1}, k ∈ {0, . . . , 2j − 1}

}
, and for m = (j, k) in M, L(j,k) =

{(j, k)}, so that S(j,k) is spanned by {ϕ0, ψj,k }. Each individual problem of testing (H0,m ) against
(H1,m ) then consists in detecting a nonnull coefficient 〈f, ψj,k〉2 in the expansion of f with respect to
the Haar basis.
Then, we consider the test Φ̄nonnested

α aggregating as in (1.1) the tests

1{
T(j,k)>q

(NX(1) )
(j,k)

(
1−u(NX(1) )

(j,k),α

)}, (1.27)
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where

u
(n0)
(j,k),α = (2j J̄)−1 sup

{
u, P(H0 )

(
∃(j, k) ∈M, T(j,k) > q

(n0)
(j,k)

(
1− (2j J̄)−1u

) ∣∣∣NX(1) = n0

)
≤ α

}
.

(1.28)
This test also satisfies (Plevel,α ) and, from the oracle type result obtained for Φ̄nested

α , the following
upper bound is derived.

Theorem 5 (Fromont, Laurent, Reynaud-Bouret, 2011). Given some levels α and β in (0, 1), let
Φ̄nonnested
α be the aggregated test defined above with J̄ = blog2(n/ lnn)c. For every s > 0 and s′ > 0,

such that s ≥ s′/(2s′ + 1), there exist some positive constants C(s, s′) and C(α, β,R,R′, R′′, s, s′) such
that if n > C(s, s′), then

SRβ
d2

(
Φ̄nonnested
α ,Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′)

)
≤ C(α, β,R,R′, R′′, s, s′)

(
lnn

n

) s′
2s′+1

.

In view of the above results, considering

F1
(i)

=
{
Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′), s ≥ (s′/2) ∨ (s′/(2s′ + 1))

}
,

for n large enough, the test Φ̄nested
α of Theorem 4 satisfies

(
P

adaptive,α,β,F1
(i)
,d2

)
, with a price for adap-

tivity of the order of a (ln lnn)1/2 factor. Now consider

F1
(ii)′

=
{
Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′), s′/(2s′ + 1) ≤ s < s′/2

}
⊂ F1

(ii)
,

where F1
(ii) is the collection corresponding to the parameter set of the case (ii) in Theorem 3, that is

F1
(ii)

=
{
Bs,2,∞(R) ∩ wBs′(R′) ∩ L∞(R′′), s < s′/2, s′ > 1/2

}
.

For n large enough, the test Φ̄nonnested
α of Theorem 5 satisfies

(
P

adaptive,α,β,F1
(ii)′

,d2

)
, with no price for

adaptivity.
Simply combining the two above tests as defined in Theorem 4 and Theorem 5 (with a Bonferroni
correction), that is taking the test Φ̄α = Φ̄nested

α/2 ∨ Φ̄nonnested
α/2 , allows to obtain adaptivity over the

collection of classes coming from both F1
(i) and F1

(ii)′ . More precisely, for n large enough, Φ̄α satis-
fies

(
P

adaptive,α,β,F1
(i)∪F1

(ii)′
,d2

)
. Notice that the parameter set considered in F1

(i) ∪ F1
(ii)′ is the set

{(s, s′), s ≥ s′/(2s′ + 1)}. We now know, from the posterior work [10] (see [11] for more details), that
some aggregated tests could be constructed, so that they are adaptive over F1

(i) ∪ F1
(ii).

We still however do not know what exactly happens for the parameter set considered in the case (iii)
of Theorem 3.

1.4.3 Links with model selection and thresholding

Based on the idea that the Poisson process is closely related with the density model, the links between
the first aggregated test Φ̄nested

α based on a collection of nested subspaces and model selection become
obvious, and are explained in Section 1.2.1.
Using a collection of extremely nonnested subspaces such as the one considered in our second aggregated
test Φ̄nonnested

α is more in the spirit of thresholding approaches, where each coefficient in the expansion
of f is taken into account by itself, independently of the other ones, than model selection approaches,
though bridges are well known between these two approaches.
In the above notation, following the thresholding principle, one could roughly estimate the quadratic
functional d2

2 (ΠSJ (f),F0 ) by
∑

(j,k)∈LJ β̂
2
(j,k)1|β̂(j,k)|≥λ(j,k)

, where β̂(j,k) = n−1
∑NX(1)

i=1 ψ(j,k)(Xi).
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A test of (H0 ) against (H1 ) could then be introduced as

1{∑
(j,k)∈LJ

β̂2
(j,k)

1|β̂(j,k)|≥λ(j,k)
>cJ,α

},
where the λ(j,k)’s and cJ,α have to be correctly calibrated so that the test is of level α. This test is in
fact equivalent to

1{∃(j,k)∈LJ , β̂2
(j,k)

>c(j,k),α

},
for well chosen critical values c(j,k),α’s. Replacing the rough estimator β̂2

(j,k) by an unbiased estimator
of 〈f, ψ(j,k)〉22 and correctly calibrating the critical values leads to the test Φ̄nonnested

α .
Notice that the idea is not completely new. Such aggregation of tests coming from wavelet shrinkage
has already been proposed to construct adaptive tests in various statistical models. One can cite for
instance the papers by Spokoiny ([Spo96] and [Spo98]) in Gaussian white noise models or by Butucea
and Tribouley [BT06] in the density model. Combining some tools from model selection and wavelet
analysis was proposed by Baraud, Huet and Laurent [BHL03] in a Gaussian regression framework, and
in [5] in the density framework. However, in these tests, the individual levels of the tests (namely the
um,α’s) are identical for all the aggregated single tests. Such a choice does not allow to recover the
minimax separation rates over weak Besov spaces. As seen above, to obtain minimax adaptivity on
such spaces, a weight has to be correctly attributed to each individual level.

1.4.4 Experimental results

A simulation study is provided in [7], which aims at comparing the performance of the proposed tests in
practice, through the estimated sizes and powers of the tests, with the one of some historical tests: the
conditional Kolmogorov Smirnov test, the unconditional Laplace test, and the Z test studied, among
others, in [BEW85, CS93]. The critical values involved in our tests are approximated by Monte Carlo
methods, which are quite complex from an algorithmic point of view, as the simulations have to be
done given each number of observed points in the Poisson process. The parameter n is chosen equal to
100, and the alternative intensities such that

∫
[0,1] fdλ = 1, that is NX(1) has a Poisson distribution

with parameter n = 100. These alternatives, which are either rather smooth, or very irregular, are
displayed in [7, Section 5], and one can see that the inhomogeneity is not really visible, just looking at
histograms, especially when the alternatives are similar to a uniform density with very localized spikes.
When the alternatives are not increasing, our tests have estimated powers significantly larger than
the Laplace and Z tests that are designed for increasing alternatives, but also than Kolmogorov and
Smirnov’s test.
As expected, the test Φ̄nested

α performs better than Φ̄nonnested
α when the alternatives are smooth, and

the trend is in general reversed when the alternatives are very irregular. But we also found some cases
for which this rule is not valid. The combination of both tests is therefore recommended in any practical
situation.
As for the increasing alternatives, the specific Laplace and Z tests remain the most powerful ones (as
they are precisely designed to be the most powerful ones in a parametric context), especially when the
alternatives are smooth. In this case however, the performance of our tests could surely be significantly
improved by using the Fourier basis instead of the Haar basis (see [5] for instance).

1.4.5 Tools and sketches of proofs

Sketch of proof for the lower bound in Theorem 3. The proof follows similar arguments as
the ones for the lower bound explained in Section 1.3.5. The idea is therefore to construct a class of
alternatives Ω(r∗) ⊂ {f, d2(f,F0) = r∗ }, with r∗ as large as possible, included in Bs,2,∞(R)∩wBs′(R′),
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but for which

inf
φα satisfying (Plevel,α )

sup
f∈Ω(r∗)

Pf (φα = 0) ≥ β.

1. The first step is to introduce the class of alternatives

ΩM,D(r) =

{
f = Cϕ0 + r

√
M

D

M∑
l=1

βlϕ (M.− l + 1) , βl ∈ {−1, 0, 1},
M∑
l=1

1βl 6=0 = D

}
,

where ϕ is a function on [0, 1] such that
∫

[0,1] ϕdλ = 0,
∫

[0,1] ϕ
2dλ = 1, and ‖ϕ‖∞ ≤ C. Note

that for every f in ΩM,D(r), as soon as r2 ≤ D/M , f is positive, and d2(f,F0) = r.

2. The second step is then to determine a maximal radius rM,D ≤
√
D/M such that for all

r ≤ rM,D,

inf
φα satisfying (Plevel,α )

sup
f∈ΩM,D(r)

Pf (φα = 0) ≥ β.

This step is still based on the Bayesian techniques developed by Ingster [Ing93], and described
in Section 1.3.5. The prior µr on ΩM,D(r) is here constructed by considering

fξ,∆(x) = Cϕ0(x) + r

√
M

D

M∑
l=1

∆lξlϕ (Mx− l + 1) ,

where ξ = (ξ1, . . . , ξM ) is a sample of i.i.d. Rademacher variables, and ∆ = (∆1, . . . ,∆M ) is a
random vector, independent of ξ and defined by ∆l = 1l∈L, where L is a set of D indices drawn
at random from {1, . . . ,M} without replacement.

3. The third step is to find the maximal radius rM,D,s,s′,R,R′ ≤ rM,D so that ΩM,D(rM,D,s,s′,R,R′) is
included in Bs,2,∞(R)∩wBs′(R′), and to take Ω(r∗) = ΩM∗,D∗(rM∗,D∗,s,s′,R,R′) with appropriate
M∗ and D∗.

Notice that the computations, which are here more difficult than the ones when only considering
classical Besov bodies, heavily rely on the independence properties of the Poisson process. Therefore,
the proof is not straightforwardly exportable in the density model.

Tools for upper bounds. A first point is to see that the two considered tests can be rewritten with
a same expression. They indeed both take the value 1 if and only if

∃L ∈ C,
∑

(j,k)∈L

1

n2

NX(1)∑
i 6=i′=1

ψ(j,k)(Xi)ψ(j,k)(Xi′) > c
(NX(1) )
L,α ,

where:
— for Φ̄nested

α , C = {LJ , J ∈M} and c(NX(1) )
LJ ,α = q

(NX(1) )
J

(
1 − u(NX(1) )

J,α

)
, with u(NX(1) )

J,α given by
(1.26);

— for Φ̄nonnested
α , C = {L, L ⊂ LJ̄ } and c

(NX(1) )
L,α =

∑
(j,k)∈L q

(NX(1) )
(j,k)

(
1−u(NX(1) )

(j,k),α

)
, with u(NX(1) )

(j,k),α

given by (1.28).
From this shared expression, an oracle type result is obtained for both tests at the same time, following
rather similar arguments as in the proof of Theorem 1 proved in [5]. In particular, concentration
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inequalities for U -statistics of order 2 for a Poisson process in [HRB03, Theorem 4.2] are used since

∑
(j,k)∈L

1

n2

NX(1)∑
i 6=i′=1

ψ(j,k)(Xi)ψ(j,k)(Xi′)

=
1

n2

∑
(j,k)∈L

[(∫
X
ψ(j,k)(x) (dNX(x)− f(x)ndλ(x))

)2

−
∫
X
ψ2

(j,k)(x)dNX(x)

]

+
2

n

∫
X

(ΠSL(f)(x)− 〈f, ϕ0〉2ϕ0(x)) (dNX(x)− f(x)ndλ(x)) + d2
2(f,F0)− ‖f −ΠSL(f)‖22 ,

where SL is naturally the space spanned by {ϕ0, ψ(j,k), (j, k) ∈ L}.
A more tricky point is here the control of the random critical values c(NX(1) )

L,α . Using again concentration
inequalities for U -statistics, but for a sample of uniform real random variables, from [HRB03, Theo-
rem 3.4], allows to upper bound c(n0 )

L,α for every given integer n0. Then, a control of the obtained upper
bound, but replacing n0 by the random variable NX(1), is computed thanks to Bernstein’s inequality,
thus leading to the expected oracle type result.
Theorem 4 and Theorem 5 are rather straightforward consequences of this oracle type result, by
standard arguments from the approximation theory as concerns classical Besov bodies. The arguments
are of course more difficult when considering weak Besov bodies.

1.5 Perspectives

Only short-term perspectives which are already the objects of current works are stated in the present
dissertation.

It is rather clear that the minimax separation rates and the minimax adaptive tests presented in
Section 1.4 and Section 3.2 could be adapted to handle goodness-of-fit testing problems in the density
model for instance, but also signal detection problems. The issue is however not so obvious, as the
lower bounds for the minimax separation rates over weak Besov bodies, obtained here, strongly rely
on the very convenient independence properties of the Poisson processes.

Other interesting points would be to extend the aggregated tests to general kernels based tests, in the
spirit of [9] and [10] (see Chapter 3), thus exploiting the properties of the RKHS based on reproducing
kernels. The recent works in the statistical learning literature on the links between classical weak
distances between distributions and the MMD distance (see [SSGF13] and references therein) open up
a wide field of research, giving new insights to many historical tests such as Kolmogorov-Smirnov type
ones.

Furthermore, our work on multiple testing, and in particular on the parallel between multiple tests
and aggregated tests (see Chapter 5), should help us to improve the present aggregation scheme. Some
improvements have already been made with the introduction of some weights in the individual levels
in [7, 10] (with respect to the tests introduced in [BHL03]), so that the aggregated tests can now be
minimax adaptive over classes of very irregular alternatives such as weak Besov bodies. But one can
also imagine new refinements, taking advantage of knowledge on multiple step-down testing procedures,
to increase the power of the tests.



Chapter 2

Contributions to classification

2.1 Introduction

In this chapter, we deal with the usual problem of binary classification in statistical learning, where
the observed random variable is distributed according to the following model.

M(1)
classification X = Xn = (X1, . . . , Xn) is a sample of n i.i.d. random variables Xi = (Yi, Zi) with

the same distribution P as a pair of random variables (Y,Z), defined on a probability
space (Ω,A,P), with values in a measurable space X = Y× {0, 1}.

In the above model, the marginal distribution of Y is denoted by PY , and the expectation with respect
to PY by EY . The set of possible probability distributions P is denoted by P.

The purpose of classification is to construct a (measurable) function, called a classification rule or a
classifier, f̂n : Y → {0, 1} based on Xn, which allows to predict the value of Z from the observation
of Y . When the value of Z is not fully determined by Y and Xn, the prediction suffers from the
classification error defined by L(f̂n) = P(f̂n(Y ) 6= Z|Xn). The function f∗ minimizing the classification
error L(f) = P (f(Y ) 6= Z ), over the set F of all possible measurable functions f : Y→ {0, 1}, is called
the Bayes classifier. From the regression function η : y ∈ Y 7→ P (Z = 1|Y = y ), the Bayes classifier
is expressed as f∗(y) = 1{η(y)>1/2}. In statistical terms, classification corresponds to the estimation of
this Bayes classifier f∗ from the sample Xn, and the theoretical performance of any estimator f̂n can
be evaluated by comparing E

[
L(f̂n)

]
with L(f∗). In particular, f̂n is said to be universally consistent if

E[L(f̂n)] tends to L(f∗) as n tends to +∞ for every P in P. So many references are devoted to universal
consistency of classifiers, that they cannot be all cited, all the more as the methods of construction of
classifiers are highly varied, but some review of the historical results at least can be found in [DGL96].
We here investigate classifiers obtained as penalized empirical classification error minimizers on the
one hand, and plug-in rules combined with a hold-out or data-splitting device on the other hand, from
a nonasymptotic point of view based on oracle inequalities, leading to minimax adaptivity properties.

Although the present chapter does not deal with nonparametric testing as all the other ones of this
dissertation, it is in fact closely linked to most of the ideas developed in the next chapter on two-sample
problems, mixing classical minimax adaptive tests with bootstrap and statistical learning approaches
such as (reproducing) kernels and k-Nearest Neighbors methods.

2.1.1 Nonasymptotic minimax adaptivity

From a nonasymptotic point of view, the difference between E[L(f̂n)] and L (f∗ ), for a given sample
size n, usually defined as the excess risk of the estimator f̂n, allows to introduce the following definition.
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Definition 3 (Risk of a classifier). Let f̂n be a classifier based on Xn, that is an estimator of the
Bayes classifier f∗. For a given subset Q of P, the risk of f̂n over Q is defined by:

Rn

(
f̂n,Q

)
= sup

P∈Q

(
E
[
L
(
f̂n

)]
− L (f∗ )

)
.

Definition 4 (Minimax risk, minimax (adaptive) classifier). Let Q be a collection of subsets of P.
The minimax risk over some probability distributions set Q in Q is defined as

mRn (Q) = inf
f̂n

Rn

(
f̂n,Q

)
= inf

f̂n

sup
P∈Q

(
E
[
L
(
f̂n

)]
− L (f∗ )

)
,

where the infimum is taken over all the possible classifiers, and f∗ is the Bayes classifier.
A classifier f̂n based on Xn is said to be minimax over Q if Rn(f̂n,Q) achieves mRn (Q), possibly up
to a multiplicative constant.
It is said to be minimax adaptive over the collection Q if Rn(f̂n,Q) achieves, or nearly achieves,
mRn (Q) for every Q in Q simultaneously. This property is formalized in the following as(
Padaptive,Q

)
Rn(f̂n,Q) achieves or nearly achieves mRn (Q), for every Q in Q.

In the case where Y ⊂ Rd, the subsets Q of P, over which the risk or the minimax risk is evaluated,
are usually defined thanks to complexity and margin assumptions.

For instance, consider Q = PC = {P ∈ P, f∗ ∈ {1C , C ∈ C }}, where C is a Vapnik-Chervonenkis
(VC) class of subsets of Y, that is a class of subsets of Y with finite VC dimension:

V (C) = sup

{
k ≥, max

y1,...,yk∈Y
# {{y1, . . . , yn } ∩ C, C ∈ C } = 2k

}
<∞.

A now well-known lower bound for the minimax risk over PC was obtained by Vapnik and Chervonenkis
[VC74]: there exist some positive constants κ1 and κ2 such that

mRn (PC ) ≥ κ1

√
V (C)/n for n ≥ κ2V (C).

This lower bound was then proved to be achieved, up to a multiplicative constant, by the Empirical
Risk Minimizer on {1C , C ∈ C } (see (2.2) below) in [Lug02]. The construction of minimax adaptive
classifiers has been the purpose of many papers, and the penalized ERM approach account for a large
part in these references. Section 2.2 below deal with this issue, and in particular with the idea of
general weighted bootstrap penalization, first introduced in [1, 2, 6] as an extension of the Rademacher
penalization due to Koltchinskii [Kol01] and [BBL02].
Considering the optimistic situation, called the zero-error case, where the Bayes classification error is
assumed to be equal to zero, Vapnik and Chervonenkis [VC74] and Haussler et al. [HLW94] gave a lower
bound for the minimax risk over the smaller setQ = PC,ZE = {P ∈ P, f∗ ∈ {1C , C ∈ C } , L (f∗ ) = 0}.
They proved that there exist some positive constants κ3 and κ4, such that

mRn (PC,ZE ) ≥ κ3V (C)/n for n ≥ κ4V (C).

This lower bound is achieved, up to a (lnn) factor, by some ERM classifiers (see [DW76] and [Vap82]).
In the following, the minimax risk mRn (PC,ZE ) is referred to as the zero-error minimax risk for the
VC class C, by contrast to the minimax risk mRn (PC ) referred to as the global minimax risk for C.
The main point here is that the zero-error minimax risk is of smaller order of magnitude than the
global one, and that the difference is really significant (V (C) lnn/n at most instead of

√
V (C)/n). This

lead to the intuition that the minimax risk can be acutely analyzed when restricting to probability
distribution such that the Bayes classification error is not necessarily exactly equal to zero but very
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small. Devroye and Lugosi [DL95] and Lugosi [Lug02] gave such a refined analysis in a case which can
be viewed as a kind of interpolation between the global case and the zero-error one. In their proofs,
the behavior of the regression function η around 1/2 turns out to be crucial. Mammen and Tsybakov
[MT99] first investigated the influence of this behavior by introducing margin assumptions, and then
were followed by many authors (see [Tsy04, MN06, Kol06, AT07, Lec07a, AB11] among many other
references).
Several kinds of complexity and margin assumptions have been considered in the literature.
As for complexity assumptions, a review can be found in [Kol06] notably including assumptions ex-
pressed in terms of VC dimension (as in [MN06]) or entropy with bracketing (as in [Tsy04]) for instance.
Another kind of complexity assumption is studied in [AT07].
As for margin assumptions, we introduce, for h in [0, 1], and θ ≥ 1, the following general margin as-
sumption deduced from [MT99] and [Tsy04]:

GMA(θ, h) : L(f)− L(f∗) ≥ (hEY [|f(Y )− f∗(Y )|] )θ , ∀f ∈ F .
Notice that if there exists κ > 0, such that

MA(α) : P[|η(Y )− 1/2| ≤ t] ≤ κtα, ∀t > 0,

then GMA((1 + α)/α, h) is satisfied for some h in [0, 1]. Moreover, if

MA(∞) : |2η(y)− 1| ≥ h, ∀y ∈ Y,

then GMA(1, h) is satisfied.

Let PC,GMA(θ,h) = {P ∈ P, f∗ ∈ {1C , C ∈ C } , P satisfies GMA(θ, h)}, for some VC class C satisfy-
ing an appropriate condition of separability denoted by (M) in [MN06]. Then Massart and Nédélec
[MN06] prove that the ERM classifier f̂n over {1C , C ∈ C } satisfies, for every h ≥ (V (C)/n)1/(2θ),

Rn

(
f̂n,PC,GMA(θ,h)

)
≤ κ5

(
V (C)(1 + ln(nh2θ/V (C)))/(nh)

) θ
2θ−1

. (2.1)

They also prove that this ERM classifier is optimal in the following (weak) minimax sense, when θ = 1.
If C is a VC class of subsets of Y such that 2 ≤ V (C) ≤ n, then

inf
f̂n∈{1C , C∈C }

Rn

(
f̂n,PC,GMA(1,h)

)
≥ κ6

{
(V (C)/(nh)) ∧

√
V (C)/(nh)

}
.

This means in particular that no ERM classifier over any subset of {1C , C ∈ C } can have a risk with
faster rate of convergence than n−1 (super-fast rate). This however does not mean that no classifier
can have a risk with such super-fast rate of convergence, as proved by Audibert and Tsybakov [AT07].

Let now for ρ, h in (0, 1), θ ≥ 1, and some set F ′ of measurable functions from Y to {0, 1},

PF ′,ρ,GMA(θ,h) =
{
P ∈ P, f∗ ∈ F ′, H(ε,F ′,L1(Y, PY )) = O

(
ε−ρ

)
∀ε ∈ (0, 1), P satisfies GMA(θ, h)

}
,

where H(ε,F ′,L1(Y, PY )) is the ε-entropy with bracketing of the set F ′ with respect to the L1(Y, PY )
norm. Considering the ERM classifier f̂n computed on a set depending on ρ, Massart and Nédélec
[MN06] prove that

Rn

(
f̂n,PF ,ρ,GMA(θ,h)

)
≤ κ7

{(
(1− ρ)2nh1−ρ )− θ

2θ+ρ−1 ∧ (1− ρ)−1n−1/2

}
,

which slightly refines Tsybakov’s [Tsy04] result as it gives the precise dependence with respect to h.
This upper bound is proved to be optimal in a minimax sense by Tsybakov [Tsy04] when Y = [0, 1]d,
and in a slightly weaker minimax sense by Massart and Nédélec [MN06] when θ = 1. Minimax adaptive
classifiers over some collection of such classes PF ,ρ,GMA(θ,h) are constructed in Tsybakov [Tsy04], laying
the foundation of the approach of optimal aggregation of estimators, now largely developed.
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2.1.2 Penalized ERM or model selection by penalization

As seen above, minimax classifiers can be obtained by the historical Empirical Risk Minimization
(ERM) approach introduced in learning issues by [VC71]. Given a set F ′ of measurable functions from
Y to {0, 1}, the ERM classifier over F ′ is defined as

f̂n,F ′ ∈ argminf∈F ′Ln(f), (2.2)

where

Ln(f) =
1

n

n∑
i=1

1f(Yi) 6=Zi .

The question of minimax adaptivity here becomes a question of choice of an appropriate function set
F ′. The famous method of Structural Risk Minimization (SRM) initiated by Vapnik [Vap82] and also
known as complexity regularization [Bar91] consists in selecting, among a given collection of function
sets, the set F ′ minimizing the penalized criterion Ln(f̂n,F ′) + pen(F ′). The penalty term pen(F ′)
usually involves a quantity measuring the complexity of F ′, such as for instance the VC dimension of
the class of subsets associated with F ′. Considering a collection {Fm, m ∈ N \ {0}} of subsets of F
such that each Cm = {{y ∈ Y, f(y) = 1}, f ∈ Fm } is a VC class with VC dimension V (Cm), Lugosi
and Zeger [LZ96] use some penalties of order κ

√
(V (Cm) lnn+m)/n. They prove that if the sequence

(V (Cm))m∈N\{0} is strictly increasing, and if the Bayes classifier f∗ belongs to the union of the Fm’s,
there exists an integer k such that the risk of the SRM or penalized ERM classifier is upper bounded
by
√
V (Ck) lnn/n, up to a multiplicative constant, that is the classifier is minimax over Fk up to a

logarithmic factor.

This approach can be viewed as a classical model selection by penalization approach (see [Mas07])
for the estimation of the Bayes classifier f∗, where each function set Fm corresponds to a model in a
given collection {Fm, m ∈M} and where Ln plays the role of the empirical contrast, associated with
the contrast defined for every f in F by γ(f, (y, z)) = 1f(y) 6=z. An ERM classifier f̂n,m := f̂n,Fm can
thus be viewed as a minimum contrast estimator of f∗. For every m inM, such a classifier, or more
generally an approximate ERM classifier over Fm, or an approximate minimum contrast estimator of
f∗ over Fm, f̂n,m, is considered, that is

Ln

(
f̂n,m

)
≤ inf

f∈Fm
Ln(f) + ρn/2, (2.3)

for some ρn ≥ 0. Denoting by l(f, g) = L(g) − L(f), for all f and g in F , the excess risk of f̂n,m is
given by E[l(f∗, f̂n,m)]. Ideally, we would like to select some element m̄ (the oracle) inM minimizing

E
[
l
(
f∗, f̂n,m

)]
= l (f∗, fn,m ) + E

[
l
(
fn,m, f̂n,m

)]
,

where fn,m denotes some function in Fm such that l (f∗, fn,m ) = inff∈Fm l (f
∗, f ) . However, such an

oracle m̄ necessarily depends on the unknown distribution P . The original idea of model selection by
penalization is to select, only from the data, an element m̂ in M mimicking the oracle. Considering
some penalty function pen :M→ R+, m̂ is chosen such that:

Ln

(
f̂n,m̂

)
+ pen (m̂) ≤ inf

m∈M

{
Ln

(
f̂n,m

)
+ pen(m)

}
+ ρn/2,

and the selected estimator f̂n,m̂ is called the approximate minimum penalized contrast estimator. A
challenge is to determine a penalty function such that

E
[
l
(
f∗, f̂n,m̂

)]
≤ C inf

m∈M

(
l (f∗, fn,m ) + E

[
l
(
fn,m, f̂m

)])
+Rn

≤ CE
[
l
(
f∗, f̂n,m̄

)]
+Rn,
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where Rn is a residual term. Such an inequality is called an oracle inequality.
The models and the penalty function are usually chosen so that from this oracle inequality, the selected
classifier f̂n,m̂ is proved to satisfy minimax adaptivity properties.
With this purpose in view, when considering the global minimax risk, the following inequality may be
sufficient instead:

E
[
l
(
f∗, f̂n,m̂

)]
≤ C inf

m∈M

(
l (f∗, fn,m ) +

√
V (Cm )

n

)
+Rn, (2.4)

with a residual term of order at most
√
V (Cm ) /n.

The various strategies to construct adequate penalty functions in this global minimax context are
all connected with the calibration of an upper bound for supf∈Fm (L(f)− Ln(f)) (see Section 2.2).
The penalties based on the VC dimension, such as the one of [LZ96] are deterministic and have the
disadvantage to overestimate this supremum for specific data distributions. This remark is in favor of
data-driven penalization approaches, such as Rademacher penalization ones introduced by Koltchinskii
[Kol01] and Bartlett, Boucheron, Lugosi [BBL02].

Although Rademacher variables were already used in the wild bootstrap approach (see [Mam92] for
instance), the connection between such Rademacher penalization approaches in classification, and
classical model selection with bootstrap penalization, was neither studied, nor even clearly stated until
the work which is presented in Section 2.2. The purpose of [1, 2, 6] was actually to establish this
connection, and thereby to extend the Rademacher penalties to a wider family of penalties based on
the general weighted bootstrap approach.

2.1.3 Plug-in classifiers

A plug-in classifier is of the form f̂n(y) = 1η̂n(y)≥1/2, for all y in Y, where η̂n is a nonparametric
estimator of the regression function η. The most simple plug-in classifiers are probably the kernel and
k-Nearest Neighbors (k-NN) rules, which have been largely studied from both theoretical and practical
points of view, in particular when the input data space Y is assumed to be equal to Rd. In this case,
conditions leading to universal consistency, and even strong universal consistency are well-known (see
[DGL96] and [GKKW02] for an overview). Most of these results are based on the same inequality
proved in [DGL96, Theorem 2.2]:

E
[
L
(
f̂n

)]
− L (f∗ ) ≤ 2E

[∫
|η̂n(y)− η(y)| dPY (y)

]
,

which enables to see that closeness between η̂n and η implies closeness between f̂n and f∗ in terms
of risk. The papers [CH67], [Sto77] and [DGKL94] for instance deal with consistency of kernel and
k-NN regression function estimators, while [KK06] give more precise rates of convergence of E[L(f̂n)]−
L (f∗ ) towards 0, under regularity conditions on η. Audibert and Tsybakov [AT07] study the plug-in
classifiers from the minimax point of view, considering the margin assumption MA(α), and complexity
assumptions expressed as regularity assumptions on the regression function. For instance, introducing

Pβ,MA(α) =
{
P ∈ P, η belongs to a Hölder class of functions of order β,

P satisfies MA(α), PY satisfies the strong density assumption
}
,

(see [AT07, Definition 2.2] for the definition of the strong density assumption), Audibert and Tsybakov
construct a plug-in classifier whose risk over Pβ,MA(α) is at most of order n−β(1+α)/(2β+d). This risk
is then proved to be optimal when αβ < d. Audibert and Tsybakov [AT07] thus give evidence that
plug-in classifiers can achieve faster rates of convergence (named super-fast rates when αβ > d) than
ERM classifiers under margin assumptions. They further notify that such super-fast rates can not be
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achieved when the strong density assumption is relaxed to a mild density assumption. Nevertheless,
fast-rates of order n−1 are still achievable by a "hybrid" plug-in/ERM type classifier.
The paper by Kohler and Krzyżak [KK06] completes the picture, focusing on k-NN rules, that are at
the core of the work presented in Section 2.3.

2.2 Model selection by bootstrap penalization

This section is devoted to a work on bootstrap penalization, that was initiated in [1] and [2], then
improved and published in a longer version in [6].
Still considering the above problem of binary classification from an observed sample X = Xn dis-
tributed according to the model M(1)

classification, and keeping the same notation, we introduce a col-
lection {Fm, m ∈ M} of models, that is a collection of subsets of F , such that for all m in M,
Cm = {{y ∈ Y, f(y) = 1}, f ∈ Fm } is a VC class with VC dimension V (Cm). For every m inM, f̂n,m
denotes an approximate ERM classifier satisfying (2.3). For some penalty function pen : M → R+,
recall that m̂ is chosen such that:

Ln

(
f̂n,m̂

)
+ pen (m̂) ≤ inf

m∈M

{
Ln

(
f̂n,m

)
+ pen(m)

}
+ ρn/2,

and consider the selected estimator f̂n,m̂.
As explained in the above section, when considering the nonasymptotic minimax point of view with
the global minimax risk, one should choose a penalty function such that (2.4) holds.

The various strategies to determine adequate penalty functions with this purpose in mind rely on the
same following basic inequality.
Let us fix m inM and introduce the centered empirical contrast defined by:

∀f ∈ F , Ln(f) = Ln(f)− L(f). (2.5)

By definition,

l
(
fn,m, f̂n,m̂

)
= Ln (fn,m )− Ln (fn,m )− Ln

(
f̂n,m̂

)
+ Ln

(
f̂n,m̂

)
.

Noticing that

Ln

(
f̂n,m̂

)
+ pen(m̂) ≤ Ln

(
f̂n,m

)
+ pen(m) + ρn/2 ≤ Ln (fn,m ) + pen(m) + ρn,

we derive

l
(
f∗, f̂n,m̂

)
≤ l (f∗, fn,m ) + Ln (fn,m ) + pen(m)− Ln

(
f̂n,m̂

)
− pen(m̂) + ρn, (2.6)

which holds whatever the penalty function. Since E
[
Ln (fn,m )

]
= 0, one way to obtain (2.4) is to

choose a penalty such that pen(m̂) compensates for the fluctuations of −Ln
(
f̂n,m̂

)
and such that

E [pen(m) ] is of order at most
√
V (Cm ) /n. In this case, one needs to control −Ln(f) uniformly for

f in Fm and m inM and concentration inequalities for the supremum supf∈Fm
(
− Ln(f)

)
appear as

the appropriate tools.
Since the considered contrast γ is bounded, McDiarmid’s [McD89] concentration inequality can be used
to see that for all m in M, supf∈Fm

(
− Ln(f)

)
concentrates around its expectation. A well-chosen

estimator of an upper bound for E
[

supf∈Fm
(
−Ln(f)

)]
, with expectation of order

√
V (Cm ) /n, may

therefore be a good penalty.
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2.2.1 Rademacher and symmetrization based penalties

Starting from symmetrization tools used in the empirical processes theory, Koltchinskii [Kol01] and
Bartlett, Boucheron and Lugosi [BBL02] propose a penalty based on the random variable

R̂m = E

[
sup
f∈Fm

1

n

n∑
i=1

εi1f(Yi)6=Zi

∣∣∣∣∣Xn

]
,

where (ε1, . . . , εn) is a sample of independent identically distributed Rademacher variables such that
P (εi = 1) = P (εi = −1) = 1/2 and the εi’s are independent of Xn. More precisely, they take M =
N\{0} and they consider f̂n,m̂ with pen(m) = 2R̂m+κ1

√
lnm/n, for some absolute, positive constant

κ1. They prove that there exists some constant κ2 > 0 such that

E
[
l
(
f∗, f̂n,m̂

)]
≤ inf

m∈M
{ l (f∗, fn,m ) + E [pen(m) ]}+

κ2√
n

+ ρn.

Moreover, Koltchinskii notes that this leads to

E
[
l
(
f∗, f̂n,m̂

)]
≤ κ inf

m∈M

{
l (f∗, fn,m ) +

(√
V (Cm )

n
+

√
lnm

n
+

1√
n

)}
+ ρn.

Our aim in [1], [2] and in [6] was to extend this study by investigating penalty functions based on
random variables of the form

R̂Wn
m = E

[
sup
f∈Fm

1

n

n∑
i=1

(1−Wn,i)1f(Yi)6=Zi

∣∣∣∣∣Xn

]
, (2.7)

with various vectors of random weights Wn = (Wn,1, . . . ,Wn,n ).
Remark that R̂m corresponds the particular case whereWn = 2(B1, . . . , Bn) is a sample of i.i.d. random
variables, the Bi’s being Bernoulli random variables with parameter 1/2.

To avoid dealing with measurability issues, let us assume in all the sequel that any considered set of
measurable functions from Y to {0, 1} is at most countable.

Noticing that the symmetrization trick used by Koltchinskii [Kol01] and Bartlett, Boucheron, Lugosi
[BBL02] can be applied to any symmetric (and not only Rademacher) variable with a finite first order
moment, we first introduced penalties based on R̂Wn

m defined in (2.7) where (1−Wn,1, . . . , 1−Wn,n )
is a sample of n i.i.d. symmetric random variables such that E[|Wn,1|] < +∞. Notice that this general-
ization allows to consider, besides Rademacher penalization, the Gaussian complexity measure defined
by Bartlett and Mendelson [BM03].

2.2.2 Weighted bootstrap penalties

The general weighted bootstrap approach. Bootstrap methods were introduced by Efron [Efr79]
whose aim was to generalize and improve the ideas of the jackknife from Quenouille [Que49] and Tukey
[Tuk58]. These methods were originally developed for a sample Xn = (X1, . . . , Xn) of i.i.d. real valued
random variables or vectors with distribution P , and a root Rn = Rn(Xn;P ), defined as a functional of
the sample Xn and the common distribution P , whose probabilistic characteristics having a particular
interest from a statistical point of view (distribution, or expectation, variance, quantiles, etc.) are
unknown, and have to be estimated. Denoting by Pn the empirical measure associated with Xn defined
by Pn = n−1

∑n
i=1 δXi , Efron’s original idea was to replace in the expression of Rn(Xn;P ), P by Pn,

and Xn by an i.i.d. sample from Pn denoted by X∗n = (X∗n,1, . . . , X
∗
n,n) and called a bootstrap sample

from Xn. The conditional distribution of the resulting bootstrapped root R∗n = Rn(X∗n;Pn) given Xn

is then proposed as an estimator of the distribution of Rn.
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This intuitive estimation method was justified theoretically by asymptotic arguments that were first
specific to the considered root and its probabilistic characteristics of interest (see [Efr79] and for
instance papers on the bootstrap of the mean, then linear or related statistics, like [Sin81], [BF81],
[Ath87], [GZ89] among others).
These arguments are generally based on a result of consistency as:

L(R∗n|Xn) ' L(Rn),

meaning that the conditional distribution of R∗n given Xn converges in probability or almost surely
to the asymptotic distribution of Rn. Then, considering the empirical process Gn =

√
n(Pn − P ),

general results on the consistency of the bootstrapped empirical process G∗n =
√
n(P ∗n − Pn) where

P ∗n = n−1
∑n

i=1 δX∗n,i , were obtained in [BF81], [GZ90], or [KW92] (see [VdVW96, ST95] for instance
for theoretical reviews).
From a practical point of view, taking advantage from the fact that a realization of the bootstrap sample
X∗n given Xn = (x1, . . . , xn) can be simulated by simply taking n values with replacement in the set
{x1, . . . , xn}, statisticians often do not strive to compute exactly the probabilistic characteristics of the
bootstrapped root R∗n, but rather approximate them by Monte Carlo procedures. This explains the
frequent confusion between the term of bootstrap and the one of resampling, which is more related to
the mechanism at stake in the Monte Carlo procedures following the bootstrap estimation (see [BB95]
for instance where this point is underlined). If we introduce for every i = 1 . . . n, the random variable
Mn,i defined as the number of times that Xi appears in the bootstrap sample X∗n, it is easy to see that
the bootstrapped empirical process satisfies:

G∗n =
√
n(P ∗n − Pn) =

1√
n

n∑
i=1

(Mn,i − 1)δXi ,

and that any linear root R∗n can be expressed as a function of Xn and the Mn,i’s only. The random
vector Mn = (Mn,1, . . . ,Mn,n) which has a multinomial distribution with parameters (n, n−1, . . . , n−1)
is viewed as a resampling plan, and the Mn,i

′s as the resampling weights of the bootstrap method.

Starting from this observation, many authors proposed to study other types of resampling weights, and
to replaceMn = (Mn,1, . . . ,Mn,n) by any exchangeable random (or not) vectorWn = (Wn,1, . . . ,Wn,n),
independent of Xn. This allowed to see some well-known methods such as Fisher’s permutation, jack-
knife, subsampling or cross validation as bootstrap methods (see [Rom89], [Præ95], and [Arl07, Arl09]
for more details). This also led to various new types of bootstrap methods such as the m out of n
bootstrap introduced by Bretagnolle [Bre83], the Bayesian bootstrap of Rubin [Rub81] and Lo [Lo87],
whose resampling weights have a Dirichlet distribution, Weng’s [Wen89] bootstrap, and the wild boot-
strap whose weights are i.i.d. variables with expectation and variance equal to 1, and which is detailed
in [Mam92]. Præstgaard and Wellner [PW93] proved an analogue of Giné and Zinn’s theorem from
[GZ90] for the general exchangeable weighted bootstrapped empirical process under appropriate condi-
tions on the weights Wn = (Wn,1, . . . ,Wn,n). When the root Rn can be expressed from Gn exclusively,
as linear roots for instance, the weighted bootstrapped root is denoted by RWn

n and defined replacing
Gn in the expression of Rn by GWn

n =
√
n
(
PWn
n − Pn

)
, with PWn

n (t) = n−1
∑n

i=1Wn,it(Xi).

About the choice of the exchangeable weights, we refer to the book of Barbe and Bertail [BB95], where
an asymptotic analysis of a large family of such exchangeable weights is given, based on Edgeworth
expansions.

Weighted bootstrap penalties. From the global minimax point of view, any well-chosen estimator
of an upper bound for E

[
supf∈Fm

(
−Ln(f)

)]
, with expectation of order

√
V (Cm ) /n, may be an

appropriate penalty. Yet

E

[
sup
f∈Fm

(
−Ln(f)

)]
= E

[
sup
t∈Tm

(P − Pn)(t)

]
,
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with Tm =
{
t : X = Y× {0, 1} → {0, 1}, t(y, z) = 1f(y)6=z, f ∈ Fm

}
Extrapolating the bootstrap paradigm described above to the sample Xn in the modelM(1)

classification,
and considering the root Rn(Xn;P ) = supt∈Tm(P − Pn)(t), a natural weighted bootstrap estimator of
the expectation E [Rn(Xn;P ) ] is

R̂Wn
m = E

[
sup
t∈Tm

(Pn − PWn
n )(t)

∣∣∣∣∣Xn

]
= E

[
sup
f∈Fm

1

n

n∑
i=1

(1−Wn,i )1f(Yi) 6=Zi

∣∣∣∣∣Xn

]
,

which is introduced in (2.7), as a generalization of the Rademacher quantity R̂m.

Here are considered several kinds of random weights Wn = (Wn,1, . . . ,Wn,n):

— WRad
n = 2(B1, . . . , Bn), where (B1, . . . , Bn) is a sample of n i.i.d. Bernoulli random variables

with parameter 1/2, so that 1 − 2Bi is a Rademacher variable, which corresponds to the case
investigated by Koltchinskii [Kol01] and Bartlett, Boucheron, Lugosi [BBL02],

— WSym
n = (WSym

n,1 , . . . ,WSym
n,n ) is a sample of n i.i.d. real random variables such that

(
1−WSym

n,1

)
has a symmetric distribution and such that E

[
|WSym

n,1 |
]
< +∞,

— WEB
n = (Mn,1, . . . ,Mn,n ), where (Mn,1, . . . ,Mn,n ) is a multinomial random vector with pa-

rameters (n, , n−1, . . . , n−1), which corresponds to Efron’s bootstrap,
— WBB

n =
(
V1/Vn, . . . , Vn/Vn

)
, where (V1, . . . , Vn) is a sample of n i.i.d. positive random variables,

which corresponds to the Bayesian bootstrap investigated in [Rub81, Lo87, Wen89] when the
Vi’s are exponential random variables with parameter 1.

Now, the question is whether E
[
supf∈Fm

(
−Ln(f)

)]
= E

[
supt∈Tm(P − Pn)(t)

]
is definitely well esti-

mated by R̂Wn
m . Anterior asymptotic results in the literature, and in particular the ones of Giné and

Zinn [GZ90] and Præstgaard and Wellner [PW93], were encouraging, but we in fact aimed at obtaining
nonasymptotic oracle inequalities and minimax adaptivity properties.
Regarding (2.6), the more fundamental issue from the nonasymptotic point of view is in fact to see
how R̂Wn

m is close to the supremum supf∈Fm
(
−Ln(f)

)
= supt∈Tm(P − Pn)(t) itself.

To this end, we established in [6] in particular (see also [1] and [2] for less sharp results) new exponential
inequalities, that we describe in the next section.

2.2.3 Exponential inequalities

The scope of this section is well beyond the classification framework: here, Xn = (X1, . . . , Xn) denotes
any sample of n i.i.d. random variables defined on some probability space (Ω,A,P), with values in
X, and with common distribution P on X. Let Pn be the corresponding empirical process defined by
Pn(t) = n−1

∑n
i=1 t(Xi), and P (t) = E [ t(X1) ], for every measurable function t from X to [0, 1]. Let T

be a countable set of measurable functions from X to [0, 1].
We propose here generalizations of the exponential inequality for supt∈Tm(P −Pn)(t)− R̂Wn

m of [Kol01]
and [BBL02], based on comparisons of expectations combined with McDiarmid’s [McD89] inequality.

Expectation inequality based on symmetrization. Let Wn = (Wn,1, . . . ,Wn,n ) be a vector of
n i.i.d. random variables such that (Wn,1− 1) (or equivalently (1−Wn,1)) is a real symmetric random
variable such that E [ |Wn,1| ] < +∞. For every measurable function t from X to [0, 1], we set PWn

n (t) =
n−1

∑n
i=1Wn,it(Xi). As explained above, a first point in our analysis was to compare the expectations

of the quantities at hand, that is of supt∈T (P − Pn ) ( t) and E
[
supt∈T

(
Pn − PWn

n

)
(t)|Xn

]
.

The following inequality is obtained via a symmetrization trick developed in the empirical processes
theory by Koltchinskii [Kol81], Pollard [Pol82] and especially Giné and Zinn [GZ84].
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Introducing some independent copy X′n = (X ′1, . . . , X
′
n) of Xn and denoting by P ′n the corresponding

empirical process, one obtains by Jensen’s inequality:

E [supt∈T (P − Pn ) ( t) ] = E
[
supt∈T E

[(
P ′n − Pn

)
( t)
∣∣∣Xn

]]
≤ E

[
supt∈T

(
P ′n − Pn

)
( t)
]
.

Let (ε1, . . . , εn) be a sample of n i.i.d. Rademacher variables independent of Xn, X′n and Wn. Since
for any symmetric random variable S independent of ε1, the variables ε1S, ε1|S| and S are identically
distributed, one gets:

E
[

sup
t∈T

(P − Pn ) ( t)

]
≤ E

[
sup
t∈T

1

n

n∑
i=1

εi
(
t(X ′i)− t(Xi)

)]

≤ 2

n
E

[
sup
t∈T

n∑
i=1

εit(Xi)

]

≤ 2

nE [ |Wn,1 − 1| ]
E

[
sup
t∈T

E

[
n∑
i=1

εi|Wn,i − 1|t(Xi)

∣∣∣∣∣ε,Xn

]]

≤ 1

nE
[
(Wn,1 − 1)+

]E[sup
t∈T

n∑
i=1

εi|Wn,i − 1|t(Xi)

]
.

Using the same symmetrization argument as above finally leads to

E
[

sup
t∈T

(P − Pn ) ( t)

]
≤ 1

E
[
(Wn,1 − 1)+

]E [sup
t∈T

(
Pn − PWn

n

)
(t)

]
. (2.8)

For several other interesting inequalities, we refer the reader to the recent monograph of Giné and
Nickl [GN15].

Expectation inequality for the exchangeably weighted bootstrap. Let us here consider a
vector Wn = (Wn,1, . . . ,Wn,n) of n exchangeable and nonnegative random variables independent of
Xn and satisfying

∑n
i=1Wn,i = n, and denote by PWn

n the corresponding exchangeably weighted
bootstrap empirical process defined by PWn

n (t) = n−1
∑n

i=1Wn,it(Xi). We here aim at obtaining a
result similar to (2.8) but since we do not deal with symmetric random variables any more, we here
need to replace the symmetrization trick by another argument.
Using Jensen’s inequality again allows to obtain:

E
[

sup
t∈T

(P − Pn)(t)

]
≤ E

[
sup
t∈T

1

n

n∑
i=1

E
[
(Wn,i − 1)1Wn,i≥1

]
E [ (Wn,1 − 1)+ ]

(P (t)− t(Xi))

]

≤ 1

E [ (Wn,1 − 1)+ ]
E

[
sup
t∈T

1

n

n∑
i=1

(Wn,i − 1)1Wn,i≥1(P (t)− t(Xi))

]
.

It is known that if U and V are independent random variables such that for all g in a class of functions
G, E [g(V ) ] = 0, then

E
[
supg∈Gg(U)

]
≤ E

[
supg∈G(g(U) + g(V ))

]
. (2.9)

Applying this inequality to the random variables
∑n

i=1(Wn,i−1)1Wn,i≥1(P (t)−t(Xi)) and
∑n

i=1(Wn,i−
1)1Wn,i<1(P (t)− t(Xi)) conditionally given Wn leads to the same inequality as (2.8), that is

E
[

sup
t∈T

(P − Pn)(t)

]
≤ 1

E
[
(Wn,1 − 1)+

]E [sup
t∈T

(
Pn − PWn

n

)
(t)

]
.
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General exponential inequality. From the above computations, one can state the following com-
mon result.

Proposition 3 (Fromont, 2007). LetWn = (Wn,1, . . . ,Wn,n ) be a vector, independent of Xn, of either:
— n i.i.d. random variables such that (Wn,1 − 1) (or equivalently (1−Wn,1)) is a real symmetric

random variable such that E [ |Wn,1| ] < +∞ or,
— n exchangeable and nonnegative random variables such that

∑n
i=1Wn,i = n.

If, for every measurable function t from X to [0, 1], PWn
n (t) = n−1

∑n
i=1Wn,it(Xi), then

E
[

sup
t∈T

(P − Pn)(t)

]
≤ 1

E
[
(Wn,1 − 1)+

]E [sup
t∈T

(
Pn − PWn

n

)
(t)

]
.

Combining Proposition 3 with McDiarmid’s [McD89] inequality now leads to the following general
exponential inequality.

Proposition 4 (Fromont, 2007). With the notation of Proposition 3, for any x > 0, the following
inequality holds:

P

(
sup
t∈T

(P − Pn)(t)− 1

E [ (Wn,1 − 1)+ ]
E

[
sup
t∈T

(
Pn − PWn

n

)
(t)

∣∣∣∣∣Xn

]
≥(

1 +
E [ |Wn,1 − 1| ]

E
[
(Wn,1 − 1)+

] )√ x

2n

)
≤ e−x.

Note that in the symmetric case, that is when (Wn,1 − 1) is a real symmetric random variable,(
1 + (E [ |Wn,1 − 1| ] ) /E

[
(Wn,1 − 1)+

])
= 3 which simplifies the above inequality. As for the Rademacher

case, another concentration inequality is given in [LN11].

2.2.4 Main theoretical results

Let us now come back to the binary classification problem at hand in the modelM(1)
classification.

We consider the three possible choices of weights WSym
n , WEB

n and WBB
n defined in Section 2.2.2.

Recall that for Wn equal to any of these WSym
n , WEB

n , WBB
n ,

R̂Wn
m = E

[
sup
t∈Tm

(Pn − PWn
n )(t)

∣∣∣∣∣Xn

]
= E

[
sup
f∈Fm

1

n

n∑
i=1

(1−Wn,i )1f(Yi) 6=Zi

∣∣∣∣∣Xn

]
.

From Proposition 4, we deduce the following result.

Theorem 6 (Fromont, 2007). Let (xm)m∈M be a family of positive numbers such that
∑

m∈M e−xm≤κ,
for some constant κ. In the above notation, choose a penalty such that

pen(m) =
1

E [ (Wn,1 − 1)+ ]
R̂Wn
m +

(
1 +

E [ |Wn,1 − 1| ]
E [ (Wn,1 − 1)+ ]

)√
xm
2n

,

for every m inM. The approximate minimum penalized contrast estimator f̂n,m̂ satisfies:

E
[
l
(
f∗, f̂n,m̂

)]
≤ inf

m∈M
{ l (f∗, fn,m ) + E [pen(m) ]}+

(
1 +

E [ |Wn,1 − 1| ]
E [ (Wn,1 − 1)+ ]

)
κ

2

√
π

2n
+ ρn.

In order to obtain adaptivity properties from the global minimax point of view, computing a sharp
upper bound for E [pen(m) ] is now necessary.
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When the vector of weights WSym
n satisfy the following moment assumption

∀k ≥ 2, E
[
|Wn,1 − 1|k

]
≤ k!

2
vck−2, (2.10)

for some positive numbers v and c, an upper bound for E
[
R̂W

Sym
n

m

]
, and therefore for E [pen(m) ], is

computed in [6, Theorem 4] (for i.i.d. weights, which are not necessary symmetric), using Haussler’s
bound [Hau95] for the metric entropy of VC classes and chaining arguments.
Assuming that n ≥ 4, when WSym

n satisfies (2.10), there exist positive constants κ1 and κ2 such that

E
[
R̂W

Sym
n

m

]
≤ κ1

√
v

√
V (Cm )

n
+ κ2c

V (Cm )

n
ln2 n,

and the constants v and c can be respectively replaced by 1 and 0 when the weights have the subgaussian
behavior: E

[
eλ(1−Wn,1)

]
≤ eλ2/2 for any λ > 0, which is typically the case of Rademacher weights.

The control of E
[
R̂
WEB
n

m

]
is obtained using [6, Theorem 4] as above, but as the exchangeable weights are

not i.i.d. anymore, an additional tool has to be introduced, which is well-known in the empirical process
theory. This tool consists in a Poissonization trick, whose idea relies on the following arguments.
For every i in {1, . . . , n},Wn,i can be written asWn,i =

∑n
j=1 1Uj∈((i−1)/n,i/n], where U = (U1, . . . , Un)

is a sample of n i.i.d. random variables uniformly distributed on (0, 1). If N is a Poisson variable with
parameter n independent of Xn and for every i in {1, . . . , n}, Ni =

∑N
j=1 1Uj∈((i−1)/n,i/n], then the Ni’s

are i.i.d. with Poisson distribution with parameter 1. As N has mean n, thanks to the concentration
principle, its fluctuations are concentrated around n. As a consequence, the Ni’s are close to the Wn,i’s
but having the further advantage to be independent.
As for the Bayesian bootstrap, assuming that the Vi’s satisfy the moment assumption

∀k ≥ 2, E
[
V k
i

]
≤ k!

2
vck−2, (2.11)

Bernstein’s concentration inequality, with rather technical computations, allow to obtain a similar
control of E

[
R̂
WBB
n

m

]
, to lead to the final following result.

Corollary 2 (Fromont, 2007). Let n ≥ 4, and Wn be one of the three following vectors of weights.
— Wn = WSym

n satisfying the moment assumption (2.10),
— Wn = WEB

n ,
— Wn = WBB

n , with some Vi’s satisfying the moment assumption (2.11).
In the notation of Theorem 6, there is C = C(v, c,E [V1 ] ,E

[
|V1/Vn−1|

]
,E
[
(V1/Vn−1)+

]
) such that

E
[
l
(
f∗, f̂n,m̂

)]
≤ inf

m∈M

{
l (f∗, fn,m ) + C

(√
V (Cm )

n
+
V (Cm )

n
ln2 n+

√
xm
n

)}
+ ρn.

Moreover, in the first case, if the weights in Wn = WSym
n have a subgaussian behavior, the term(

V (Cm ) ln2 n
)
/n can be removed in the above inequality.

The above risk upper bound clearly generalizes Koltchinskii [Kol01] and Bartlett, Boucheron, Lugosi’s
[BBL02] one for Rademacher penalization.
Furthermore, it allows to prove that when ρn is smaller than n−1/2, and lnn ≤ V (Cm ) ≤ n/ ln4 n for
every m inM, f̂n,m̂ satisfies

(
Padaptive,F

)
over the whole collection of models F = {Fm, m ∈M}.

The constant 1/E
[
(Wn,1 − 1)+

]
in front of R̂Wn

m in the penalty was discussed in [6] as a possible
pessimistic choice due to technical reasons. Regarding the asymptotic theory of [GZ90] and [PW93],
better choices for the constant seemed to be 1 in the Rademacher case WRad

n , as well as in Efron’s
bootstrap case WEB

n , (E
[
V 2

1

]
/Var [V1 ])−1/2 in the Bayesian bootstrap case WBB

n . This conjecture
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seemed to be empirically confirmed by the simulation study (see also [Loz00] for the Rademacher
case).
Arlot furthermore focused on this particular issue in [Arl07, Chapter 9] and proved that under very
strong assumptions on the distribution P (only satisfied in an unrealistic toy framework), the constant
1/E

[
(Wn,1 − 1)+

]
can indeed be relaxed in the result of Proposition 3. Besides, some examples are

exhibited for which the constant cannot be relaxed, which let us think that there is here a real gap
between the asymptotic and the nonasymptotic theory, that has to be understood, and that the precise
calibration of the constant is a real difficult and, up to our knowledge, still open question.

2.2.5 Experimental results

A simulation study has been performed in [6] in order to investigate the above general bootstrap
penalization from a practical point of view. As Lozano [Loz00] and Bartlett, Boucheron and Lugosi
[BBL02], this study focuses on the issue which is usually referred to as the intervals model selection
problem and which can be described as follows.
Let us set for all u, v in N, u ≤ v, [[u, v]] = [u, v]∩N. We consider Y = {1, . . . , 2N} and some partition
{ [[ul, vl]], l ∈ L} of Y. Let Y be a random variable uniformly distributed on Y and Z a {0, 1}−valued
random variable such that P (Z = 1|Y ∈ S0 ) = 1/2 + h and P (Z = 1|Y 6∈ S0 ) = 1/2 − h, where h is
some margin parameter in (0, 1/2) and S0 = ∪l∈L0⊂L[[ul, vl]]. Then the target is the piecewise constant
function defined by f∗(y) = 1S0(y) for y in Y. Two cases are considered. The first one is based
on regular partitions of Y such that S0 = ∪k∈{2p+1, p∈N, 2p+1≤2J0−1}[[(k − 1)2N−J0 + 1, k2N−J0 ]], with
N = 8, J0 = 2, h = 0.05 first, N = 8, J0 = 6, h = 0.1 then. The second one is based on some irregular
partition of Y such that S0 = ∪k∈{2p+1, p∈N, 2p+1≤2J0−1}[[Uk−1, Uk]], with U0 = 1 and U1, . . . , U2J0−1

randomly chosen on {1, . . . , 2N − 1} in such a way that 1 ≤ U1 < . . . < U2J0−1 < 2N .
In the first case, the collection of models is chosen such thatM = {2, 22, . . . , 2N} and for m = 2J in
M,

F2J =

{
f : Y→ {0, 1}, f =

2J∑
k=1

ck1[[(k−1)2N−J+1,k2N−J ]], c1, . . . , c2J ∈ {0, 1}

}
.

The sequence (xm)m∈M is chosen as xm = lnm for all m inM.
In the second case, the collection of models is chosen so that it contains, for each complexity D in
{2, 22, . . . , 2N}, all the models based on the partitions of Y with D pieces.
The principle of the algorithm used to compute the ERM classifiers as well as Monte Carlo approxi-
mations of the bootstrap penalties is detailed in [6].

The results obtained for the estimated risks of the penalized ERM classifiers (that is the approximate
penalized contrast estimators with ρn = 0) for sample sizes varying in [[200, 2000]] as well as percent-
ages of good model (or complexity) selection give preference to Rademacher and Efron’s bootstrap
penalization in complex problems of classification (based on a partitions with many pieces), to the
Bayesian bootstrap with some Vi’s whose distribution is Gamma with parameter 4 in simple problems
(based on a regular partition with very few pieces).

In all the study, as explained above, special attention is paid on the multiplicative constant in front
of R̂Wn

m involved in the penalty term, looking at the ratio E
[
R̂Wn
m

]
/E [penid(m) ], where penid(m) =

supf∈Fm
(
− Ln(f)

)
= supt∈Tm(P − Pn)(t). In nearly all the studied cases, the conjecture that the

constant 1/E [ (Wn,1 − 1)+ ] in the penalty should be replaced by 1 in the symmetric and Efron’s
bootstrap cases, by (E

[
V 2

1

]
/Var [V1 ])1/2 in the Bayesian bootstrap case was confirmed, but this

goes against the above theoretical study and Arlot’s developments in [Arl07, Chapter 9]. Some mild
assumptions on the distribution P and the chosen collection of models that would be satisfied in the
present studied cases, and under which the constant could be relaxed, should therefore be possible,
but this remains an open question.



50 CHAPTER 2. CONTRIBUTIONS TO CLASSIFICATION

2.2.6 Posterior works

We considered in [1], [2] and [6] the binary classification problem from the global minimax point of
view, and therefore we only evaluated the relevance of the studied data-driven penalties as estimators
for the global ideal penalty penid(m). It is now well known that this global ideal penalty is not the ideal
choice when one considers the optimality from the minimax point of view under margin assumptions.
Recall that the challenge of model selection by penalization is to determine a penalty such that the
risk of f̂n,m̂ is upper bounded by infm∈M E

[
l
(
f∗, f̂n,m

)]
, or even better by E

[
infm∈M l

(
f∗, f̂n,m

)]
(for

discussions on different kinds of oracle inequalities, see e.g., [Arl07] where stronger pathwise oracle
inequalities are obtained), up to a multiplicative constant ideally close to 1.
In the same notation as in the above sections, by definition, for any m inM,

l
(
f∗, f̂n,m̂

)
= l
(
f∗, f̂n,m

)
+ Ln

(
f̂n,m

)
− Ln

(
f̂n,m

)
− Ln

(
f̂n,m̂

)
+ Ln

(
f̂n,m̂

)
.

It is easy to see that

l
(
f∗, f̂n,m̂

)
≤ l
(
f∗, f̂n,m

)
+ Ln

(
f̂n,m

)
+ pen(m)− Ln

(
f̂n,m̂

)
− pen(m̂) + ρn/2. (2.12)

The ideal, but unknown, penalty when the aim is to obtain strong oracle inequalities or minimax
adaptivity properties (under margin assumptions) is therefore penlocid (m) = −Ln

(
f̂n,m

)
. Note that

penid(m), which was estimated in our work, is a (rough) upper bound for penlocid (m). Any good estimator
of penlocid (m) itself instead of its upper bound penid(m) may therefore be a better penalty choice. Such
estimators are obtained via the local Rademacher complexities or averages which are now widely used
in the statistical learning theory (see for instance [KP99, BMP04, LW04, BBM05, Kol06]). Arlot’s
work [Arl07, Arl09] complete the picture with new local penalties, which are easier to compute and
calibrate, based on more general bootstrap schemes than the ones considered in our work, including
several cross validation approaches.
Some of these local bootstrap penalization approaches are proved to lead to minimax adaptivity prop-
erties under margin conditions such as the ones described in Section 2.1.1, as well as different versions
of the general margin assumption introduced by [Kol06] (see [Arl07, Arl09] and especially [AB11]) in
various learning frameworks.
An alternative to these approaches to obtain minimax adaptivity under margin assumptions is the
aggregation of estimators (see e.g., [Tsy04, AT07, Lec07a] and all the recent work of Lecué and co-
authors). In some cases, aggregation of estimators outperforms model selection from a specific minimax
point of view (see [Lec07b]), but let us remark that the oracle inequalities obtained there are weaker
than the ones generally achieved in model selection. Interesting discussions about this topic can also
be found in [Arl07, AB11].
The question of the constant calibration in the penalties is still challenging, though there have been
considerable advances for a few years, notably around the slope heuristics (see [Mas07, AM09] for
instance).

2.3 Functional classification under margin assumptions

In this section, we still consider the binary classification problem in the modelM(1)
classification, but focus-

ing on the case where Y is an infinite dimensional, or functional, separable space. This particular case
fits with many real-world applications where the data are more accurately represented by discretized
functions than by standard vectors.
Historically, the most simple and popular classifiers in this context are plug-in ones such as kernel
and k-Nearest Neighbors (k-NN) rules. Although these rules are known to be universally consistent
and even strongly universally consistent when Y is finite dimensional (see [CH67, Sto77, DGKL94]
and [DGL96, GKKW02] for overviews), this is not so clear when Y is a functional space, and many
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papers have been devoted to this issue in the last fifteen years (see for instance the monograph of
Ferraty and Vieu [FV06], [BCG10], and references therein). Universal consistency results are usually
established under regularity assumptions on the regression function η or under some assumption on
small balls probabilities for instance. In a recent note, Azaïs and Fort [AF13] proved that some of
these assumptions on small balls probabilities in fact imply that Y has a finite Haussdorff dimension.
Anyway, it is clear that direct approaches, such as kernel or k-NN rules straightforwardly applied on
the functional data themselves, suffer from the phenomenon commonly referred to as the curse of
dimensionality, and are therefore not expected to achieve good rates of convergence. To overcome this
difficulty, most of the traditional effective methods for Rd-valued data analysis have been adapted to
handle functional data under the general name of Functional Data Analysis. A key reference on this
topic is the series of books by Ramsay and Silverman [RS02, RS05].
The work presented in this section, in collaboration with Christine Tuleau, followed a paper by Biau,
Bunea and Wegkamp [BBW05], where the authors propose to filter the functional data Yi in the Fourier
basis and to apply the k-Nearest Neighbors rule to the first d coefficients of the expansion. The choice
of the dimension d and the number of neighbors k is made automatically by minimization of a penalized
empirical classification error, performed after some hold-out device. The resulting classifier satisfies an
oracle type inequality, and hence is universally consistent. As noted by the authors, similar results
could be obtained for other universally consistent classification procedures in finite dimension. In this
spirit, the Support Vector Machines are investigated by Rossi and Villa [RV05].
The approach of Biau, Bunea and Wegkamp [BBW05] had however let two issues unsolved. The
authors indeed underlined their preferring to implement the procedure based on the minimization of
the empirical classification error without penalization, but they did not give any theoretical justification
of this choice. They also pointed out the problem of instability of the hold-out device, which is well-
known by practitioners (see e.g., [HMLW02] for the related question of bandwidth selection in local
linear regression smoothers). The authors propose to use a cross validation technique to overcome this
problem, but still without any theoretical background.
In [3], both issues were addressed. We first proposed a theoretical justification for the improvements
observed when choosing to minimize the nonpenalized empirical classification error rather than the
penalized one. The result actually shows that the penalty of order n−1/2 considered in [BBW05] is too
large to obtain minimax adaptivity under margin assumptions. This suggests to take a penalty equal
to zero, or possibly of order smaller than n−1/2. Then, an experimental method of stabilization for the
hold-out approach is proposed, with illustrations on simple simulated data, as well as real data coming
from speech recognition or food industry contexts.

2.3.1 Functional classification via (non)penalized criteria

Let us first present the classification approach of Biau, Bunea and Wegkamp [BBW05], which is used
all along our work.
The input data space Y is assumed to be an infinite dimensional separable space, equipped with a
complete system denoted by {ψj , j ∈ N \ {0}}. For every i in {1, . . . , n}, Yi can thus be expressed as
a series expansion Yi =

∑∞
j=1 Yi,jψj and for d in N \ {0}, we set Yd

i = (Yi,1, . . . , Yi,d). In the same way,
yd denotes the first d coefficients in the expansion of any new element y in Y. The procedure developed
in [BBW05] is described as follows.

— The data are split into a training set X(Tl ) = {Xi = (Yi, Zi), i ∈ Tl } of length l (1 ≤ l ≤ n−1)
and its associated validation set X(−Tl ) = {Xi = (Yi, Zi), i 6∈ Tl } of length (n− l).

— For each k in {1, . . . , l}, d in a subset D of N \ {0}, let p̂l,k,d be the k-Nearest Neighbors
rule on Rd constructed from the set {(Yd

i , Zi), i ∈ Tl}. Let y be an element of Rd. The set
{(Yd

i , Zi), i ∈ Tl} is reordered according to increasing Euclidean distances ‖Yd
i − y‖2, and

the reordered variables are denoted by (Yd
(1)(y), Z(1)(y)), . . . , (Yd

(l)(y), Z(l)(y)). Thus Yd
(k)(y)

is the k-th nearest neighbor of y amongst {Yd
i , i ∈ Tl}. When ‖Yd

i1
− y‖2 = ‖Yd

i2
− y‖2, Yd

i1
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is declared closer to y if i1 < i2 (the indexes rule in case of equality). Then p̂l,k,d(y) is defined by

p̂l,k,d(y) =

 0 if
∑k

i=1 1Z(i)(y)=0 ≥
∑k

i=1 1Z(i)(y)=1

1 otherwise.

We introduce the corresponding functional classifier defined by

f̂l,k,d(y) = p̂l,k,d(y
d) for all y in Y.

— The appropriate k and d are simultaneously selected from the validation set by minimizing a
penalized empirical classification error:

(k̂, d̂) = argmink∈{1,...,l}, d∈D

 1

m

∑
i∈{1,...,n}\Tl

1f̂l,k,d(Yi)6=Zi + pen(d)

 , (2.13)

where pen(d) is a positive penalty term that can be equal to zero.
— The final classifier is defined by

f̂n(y) = f̂l,k̂,d̂(y) for all y in Y. (2.14)

Considering D = N \ {0, }, a family {wd, d ∈ D} of positive numbers such that
∑

d∈D e
−wd ≤ κ for

some constant κ, and a penalty of the form pen(d) =
√
wd/(2(n− l)) (penalized case), Biau, Bunea

and Wegkamp [BBW05] proved the following oracle type result. When l > 1/κ, there exists C(κ) such
that the classifier f̂n defined by (2.14) satisfies

E
[
L
(
f̂n

)]
− L (f∗ ) ≤

inf
d∈D

{
L∗d − L (f∗ ) + inf

1≤k≤l

{
E
[
L
(
f̂l,k,d

)]
− L∗d

}
+ pen(d)

}
+ C(κ)

√
ln l

n− l
, (2.15)

where L∗d is the minimal classification error when the feature space is Rd. The authors notify that the
same result holds when f̂n is defined by (2.14) with D = {1, . . . , dn} and pen(d) = 0 (nonpenalized
case), but at the price that the last term C(κ)

√
ln l/(n− l) is replaced by C(κ)

√
ln ldn/(n− l).

The quantity L∗d − L (f∗ ) can be viewed as an approximation term, which tends to 0 as d tends to
+∞. Some classical martingale arguments allow to see this. Moreover, from Stone’s [Sto77] consistency
result in Rd, one deduces that for d in N \ {0}, E[L(f̂l,k,d)] tends to L∗d as l → ∞, k → ∞, k/l → 0

whatever the distribution P . The classifier f̂n is thus universally consistent.
From the minimax point of view, (2.15) also allows to see that the risk of f̂n nearly achieves the global
minimax risk over any set of distributions based on a VC class. However, (2.15) is not sufficient to
see whether the risk of f̂n achieves the minimax risk under margin assumptions. On the one hand,
the order of magnitude of the penalty term (

√
wd/(2(n− l)) in the penalized case is too large as

compared to the rates faster than 1/
√
n− l that are expected under margin assumptions. On the other

hand, in the nonpenalized case, the right hand side of the inequality (2.15) makes a term of order√
ln ldn/(n− l) appear. This term can not be seen as a residual term when considering any margin

assumption anymore, and hence the oracle type inequality (2.15) had to be refined.

The key point in the proof of the result (2.15) of Biau, Bunea and Wegkamp is the following in-
equality, which is similar to (2.12), but adapted to the present context. Setting Ln,l(f) = (n −
l)−1

∑
i∈{1,...,n}\Tl 1f(Yi)6=Zi for all measurable function f : Y→ {0, 1}, one has

L
(
f̂n

)
− L (f∗ ) ≤ L

(
f̂l,k,d

)
− L (f∗ ) + pen(d)− pen(d̂)

+ L
(
f̂l,k̂,d̂

)
− Ln,l

(
f̂l,k̂,d̂

)
− L

(
f̂l,k,d

)
+ Ln,l

(
f̂l,k,d

)
. (2.16)
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Since L(f̂l,k,d) − Ln,l(f̂l,k,d) is centered, (2.15) is obtained by choosing a penalty such that pen(d̂) is
large enough to compensate for the quantity L(f̂l,k̂,d̂)−Ln,l(f̂l,k̂,d̂), but such that pen(d) is small enough
(of order at most 1/

√
n− l) to fit the minimax risk bounds in the global case. The main issue is then to

evaluate the fluctuations of L(f̂l,k̂,d̂)−Ln,l(f̂l,k̂,d̂), and to this end, Hoeffding’s concentration inequality
is used in [BBW05].

In [3], we propose to use instead of Hoeffding’s inequality a Bernstein type inequality which allows to
control the fluctuations of the whole quantity

L
(
f̂l,k̂,d̂

)
− Ln,l

(
f̂l,k̂,d̂

)
− L

(
f̂l,k,d

)
+ Ln,l

(
f̂l,k,d

)
,

by taking its variance into account. We then prove the following result.

Proposition 5 (Fromont, Tuleau-Malot, 2006). Assume that n ≥ 2 and let f̂n be the classifier defined
by (2.14) with a finite subset D of N \ {0} and with penalty terms pen(d) that can be equal to zero. For
any ε > 0, if GMA(θ, h) holds with θ ≥ 1 and h in [0, 1], then

E
[
L
(
f̂n

)
− L (f∗ )

∣∣∣X(Tl )
]
≤ (1 + ε) inf

k∈{1,...,l}, d∈D

{
L
(
f̂l,k,d

)
− L (f∗ ) + pen(d)

}
+ C(ε)

1 + ln ( l#D )

((n− l)h)
θ

2θ−1

. (2.17)

Taking pen(d) = 0, the obtained result proves the efficiency of the classifier in its nonpenalized version
with a risk upper bound of smaller order than (n − l)−1/2. It thus gives a theoretical justification to
the conjecture of Biau, Bunea and Wegkamp that the nonpenalized classifier has better performance
that the penalized one with a penalty term of order (n− l)−1/2.
Note that the last term in the right hand side of the inequality (2.17) is at most of the same order as
the upper bound of (2.1), so it may be viewed as a residual term. Therefore, considering the classifier
f̂n in its penalized form, but with a penalty small enough, that is with a smaller order of magnitude
than this residual term or than inf1≤k≤l

{
E
[
L
(
f̂l,k,d

)]
−L∗d

}
, the order of the risk bound is not altered.

Kohler and Krzyżak [KK06] have proved that under some local Lipschitz condition on the regression
function η, assuming that the margin condition MA(α) is satisfied,

inf1≤k≤l
{
E
[
L
(
f̂l,k,d

)]
− L∗d

}
≤ C(ln(n− l))

2(1+α)
d (n− l)−

1+α
2+d .

This allows to consider penalties such as pen0(d) = 0, pen1(d) = ln d/(n− l), or pen2(d) =
√
d/(n− l)

for instance. Some experimental results are presented in [3] in order to see the effect of each of these
various penalties on the performance of the classifiers on the one hand, and on the stability of the
approach (with respect to the data-splitting device) on the other hand.
Remark however that there is, up to our knowledge, no lower bound for the minimax risk which would
exactly guarantee that the classifier f̂n is optimal from the minimax point of view under the margin
assumption GMA(θ, h).

2.3.2 Experimental results

As explained above, we investigate from a practical point of view in [3] the classifier f̂n defined by
(2.14) with a penalty equal to pen0 pen1, pen2, or the penalty penB(d) = ln d/

√
n− l proposed by

Biau, Bunea and Wegkamp [BBW05].
The performance of f̂n is evaluated by estimating the classification error as follows: the data (of size m)
are randomly split into three parts of respective sizes l = m/4, n− l = m/2 and m/4. The first part is
used as training data set X(Tl) to construct the collection of classifiers {f̂l,k,d, k ∈ {1, . . . , l}, d ∈ D},
the second part is used as validation data set X(−Tl) to select k̂ and d̂, and the third one is used to
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estimate the classification error. The performance of f̂n is further studied in terms of stability of the
selected dimension d̂.
For our experiments, both real data coming from a speech recognition problem and food industry
problems and simple simulated data are used.
Assuming that Y = L2(R, λ), the Fourier basis is chosen for the complete system {ψj , j ∈ N\{0}}. For
each input data Yi, the coefficients of the Fourier series expansion are evaluated using a Fast Fourier
Transform.
The data coming from the speech recognition problem were created by Biau and considered in [BBW05].
The data set coming from the food industry, is the Tecator dataset, available on the StatLib repository.
This data set is now well-known and often used by the machine learning community. The simulated
data are described in [Tul05].

The conclusions are the same for all the experiments. Our study confirms that the penalty penB
first proposed in the theoretical results of [BBW05] is not relevant since the estimated risk of the
corresponding classifier is always significantly larger than the risk of the other ones. Moreover, the
selected dimension d̂ with penB is always very small (d̂ = 1 for more than 90% of the experiments),
which corroborates the idea that this penalty is too heavy, and that the nonpenalized procedure will
be more appropriate. However, a refined study of the other penalization schemes shows that it can be
interesting to consider procedures with some penalties of small order. Using some penalized procedure
with pen1 or pen2 indeed improves the stability of the dimension selection process, whereas it does not
alter the risk too much.

From the posterior work of Arlot on V -fold and hold-out penalization (see [Arl07, AL15]), we could
think that a better solution to stabilize the procedure would be to replace the hold-out device by a
classical V -fold cross validation procedure or a cross validation penalization approach.
Interesting related works are the ones of Delaigle and Hall [DH12], where linear plug-in rules are
investigated, and [HPS08], where a bootstrap choice for k is proposed.



Chapter 3

Two-sample problems

3.1 Introduction

Close links are now established between the problem of binary classification presented in Chapter 2 and
the two-sample problem in the density model, usually referred to as the problem of testing homogeneity.
Indeed, homogeneity tests may be integrated in some clustering or outliers detection procedures for
instance, and conversely, binary classification procedures can be used to construct homogeneity tests,
as explained in [GBR+12, Remark 20].

The issue of two-sample problems is thus central in my recent research, as it actually combines knowl-
edge from the minimax adaptive testing field, with usual methods in binary classification such as kernel
and k-Nearest Neighbors ones, and nonasymptotic bootstrap approaches, that I studied separately dur-
ing or in the years following my PhD.

The present chapter is devoted to this issue, that is to problems of testing the null hypothesis that two
independent sets of random variables are equally distributed. Three different models are considered:
the independent sets of random variables are either sets of i.i.d. random variables from a density model
such asM(1)

density, or sets of independent random variables from a heteroscedastic regression model, or

inhomogeneous Poisson processes like inM(1)
Poisson.

Many articles deal with the two-sample problem in the density model, from the historical tests of
Kolmogorov-Smirnov, Cramer von Mises, Wald and Wolfovitz [WW40] and their extensions, to the
more recent tests in [GBR+08, GFHS10, GBR+12, SSGF13, SFG+10], based on statistical learning
kernel methods. As for the problem of testing the equality of two signals in nonparametric regression,
among many other papers, one can cite the ones by Hall and Hart [HH90], King et al. [KHW91], or
Franke and Halim [FH07]. Note that most of signal detection tests can also be used to this purpose,
and this is in particular the case of the tests by Durot and Rozenholc [DR06] and Arlot, Blanchard,
and Roquain [ABR10]. When inhomogeneous Poisson processes are considered, Bovett and Saw [BS80]
and Deshpande et al. [DMNN99] respectively propose conditional and unconditional tests for the two-
sample problem for a restrictive alternative hypothesis.

We present here some works in collaboration with Béatrice Laurent and Patricia Reynaud-Bouret [10],
with Béatrice Laurent, Matthieu Lerasle, and Patricia Reynaud-Bouret [9], and with Christine Tuleau-
Malot [16], where new aggregated tests, based on either kernel or k-Nearest Neighbors methods, com-
bined with nonasymptotic permutation or bootstrap approaches, are proposed.
Thus, although the three models considered in these works are of course different and dedicated to
different applications, the developed tests are all based on common general ideas, that we describe in
this introduction.

A general two-sample problem can be expressed as follows.
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Let X = (X1,X2) be a pair of independent sets of random variables defined on a probability space
(Ω,A,P) and observed on a measurable space X, whose - possibly random - cardinalities are respectively
denoted by N1 and N2, and whose distributions respectively depend on unknown real valued functions
f1 and f2 in some linear space F . In the following, Pf1,f2 denotes the joint distribution ofX = (X1,X2),
and Ef1,f2 the expectation with respect to Pf1,f2 .
The corresponding two-sample problem is defined as the problem of testing

(H0 ) f1 = f2 against (H1 ) f1 6= f2,

from the observation of X = (X1,X2), with X1 = {X1
1 , . . . , X

1
N1
} and X2 = {X2

1 , . . . , X
2
N2
}.

For any event E based on X, P(H0 ) (E ) then denotes as usual sup(f1,f2), f1=f2
Pf1,f2 (E ). The pooled

set X̄ = X1 ∪X2 is of utmost importance in the following. Its cardinality is denoted by N = N1 +N2,
and its elements by {X1, . . . , XN }.

3.1.1 Nonasymptotic minimax adaptivity

The point of view that is adopted here to evaluate the considered tests is still mainly nonasymptotic,
and, in the Poisson framework, based on minimax adaptivity properties.
So, given a first kind error level α in (0, 1), any of our tests φ based on X is firstly required to be of
level α, that is to satisfy the property (2), that can also be expressed with the present notation as

(Plevel,α ) P(H0 ) (φ = 1) ≤ α.

Then, if possible, given a second kind error level β in (0, 1), our tests are secondly required to achieve,
over several classes of alternatives simultaneously, the minimax separation rate, whose definition given
below is deduced from Baraud’s [Bar02] one, but adapted to the present two-sample problem.

Definition 5 (Uniform and minimax separation rate). Let d be a metric over F , and a subset F (2)
1 of

F2. Let α and β be fixed in (0, 1), and a test φα of (H0 ) against (H1 ) satisfying (Plevel,α ).
The uniform separation rate of φα over F (2)

1 with prescribed second kind error rate β, for the metric
d, is defined by

SRβ
d

(
φα,F (2)

1

)
= inf

r > 0, sup
(f1,f2)∈F(2)

1 , d(f1,f2 )≥r
Pf1,f2 (φα = 0) ≤ β

 .

The corresponding minimax separation rate over F (2)
1 with prescribed error rates α and β, for the

metric d, is defined by

mSRα,β
d

(
F (2)

1

)
= inf

φα satisfying (Plevel,α )
SRβ

d

(
φα,F (2)

1

)
,

where the infimum is taken over all possible level α tests.

Definition 6 (Minimax (adaptive) test). Let d be a metric over F , and a collection F (2)
1 of subsets

F (2)
1 of F . A level α test φα is said to be minimax over a class F (2)

1 of the collection F (2)
1 for the

metric d if SRβ
d

(
φα,F (2)

1

)
achieves mSRα,β

d

(
F (2)

1

)
, possibly up to a multiplicative constant depending

on α and β. It is said to be minimax adaptive over F (2)
1 if SRβ

d

(
φα,F (2)

1 ) achieves, or nearly achieves,

mSRα,β
d

(
F (2)

1

)
, for every F (2)

1 in F (2)
1 simultaneously, without knowing in advance to which class of the

collection (f1, f2) may belong. This property is formalized in the following as(
P

adaptive,α,β,F(2)
1 ,d

)
SRβ

d

(
φα,F (2)

1

)
achieves or nearly achieves mSRα,β

d

(
F (2)

1

)
, for every F (2)

1 in

F (2)
1 simultaneously.
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Few references deal with the considered two-sample problems from the minimax point of view.
In the density model, up to our knowledge, the only one is the paper by Butucea and Tribouley [BT06],
where a minimax adaptive test is constructed, based on wavelet thresholding methods and a bootstrap
approach.
As for regression models, let us notice that in particular fixed design regression models for instance,
when f1 and f2 respectively denote the true signals of two observed noisy signals, any signal detection
procedure applied to the differences of the observed signals can be used to test the null hypothesis
f1 − f2 = 0. Moreover, some minimax separation rates can be determined directly from the minimax
separation rates in a signal detection problem. All the references given in Chapter 1 on signal detection
in such fixed design regression models are thus also relevant in the two-sample context, which offers
numerous possibilities. In the heteroscedastic model that we consider in this chapter, no stringent
assumption on the noise (such as a Gaussian distribution) is made, and in this sense, the minimax
adaptive test of Durot and Rozenholc [DR06] which only assumes that the noise has a symmetric
distribution, and which is based on the aggregation principle described in Chapter 1, is probably the
closest one to the test we introduce here.
As for the inhomogeneous Poisson process model, no minimax result was available until our paper [10].
However, lower bounds for the minimax separation rates in the two-sample problem can be easily
deduced from the proofs of the lower bounds in the homogeneity testing problem considered in [7] (see
[11, Section 5] for more details). The same arguments could in fact be applied in the density model,
thus providing lower bounds for the minimax separation rates in the two-sample problem, from the
ones in the goodness-of-fit testing problem.

In the papers [9, 10, 16] presented in this chapter, we only obtained minimax adaptivity results in the
Poisson process model, and this is why we particularly focus on this model in the following.
In the other models, our tests are constructed from the same aggregation scheme as in the Poisson
process model, and are therefore expected to be also minimax adaptive, but this is the topic of a
current work. Some of these tests are based on the aggregation of kernel or k-Nearest Neighbors
testing procedures, that are known to be consistent against any alternative, and so are also consistent
against any alternative.

Following the Neyman-Pearson principle, it has nevertheless to be recalled that the priority issue when
constructing a testing procedure is that it satisfies (Plevel,α ).
When considering single tests in one-sample problems such as in Chapter 1, this issue is obvious as
soon as a test statistic, whose distribution is completely known or easy to simulate under the null
hypothesis, is available. It is still rather simple when considering aggregated tests based on such single
tests, as explained in Section 1.1.2. It becomes clearly more difficult in two-sample problems where,
in general, the distributions of the considered test statistics are not free from the unknown function
f1 = f2 under (H0 ). Therefore, even if we hoped to obtain minimax adaptive properties for our
tests, our main concern was to construct aggregated tests (thus expected to be minimax adaptive),
which achieve (Plevel,α ) despite nonfree distributions of the test statistics under (H0 ). To this end,
permutation and bootstrap approaches are introduced, and then adapted to the aggregation scheme.

3.1.2 Aggregated tests with permutation and bootstrap approaches

As explained in Chapter 2, Section 2.2, Efron’s bootstrap was originally used in statistical problems
where some probabilistic characteristic of a root, that is a functional of an observed sample and its
distribution, has to be estimated. The case of linear roots has been widely studied in the literature,
and in this particular case, Efron’s bootstrap has even been generalized to more general weighted
bootstrap approaches. The idea is to create a bootstrapped root whose conditional distribution, given
the observed sample, is (asymptotically) close to the distribution of the initial root.
In testing problems, the same principle can be used either to approximate the distribution of a test
statistic T under the null hypothesis (whatever the true hypothesis), or to mimic, under the null
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hypothesis, the distribution of T . Asymptotic tests can thus be obtained (see Chapter 4 for instance),
which are of prescribed asymptotic size α in (0, 1) and consistent against reasonable alternatives.
When considering the tests from a nonasymptotic point of view, the tests are required to be of level α
that is to satisfy (Plevel,α ) for any observed sample size. To this end, exact bootstrap approaches have to
be introduced, so that, for instance, the conditional distribution of the bootstrapped test statistic given
another particular statistic Z, is equal (and not only close) to the conditional distribution of the initial
test statistic given Z. In two-sample problems, Z is generally taken as the pooled set X̄, and a historical
example of exact bootstrap approach is the permutation approach which goes back to the thirties with
Fisher’s precursor work [Fis35], and which has been largely developed then with a huge family of permu-
tation tests (see [PS10] for a review). Among the numerous references on permutation tests, one can cite
at least Hoeffding’s theoretical study [Hoe52], which lays the foundations of properly justified permuta-
tion tests, and which allows to generalize the principle by considering a general group of transformations
instead of the only permutation group. The exact bootstrap approaches based on symmetrization ar-
guments, such as the ones introduced by Durot, Rozenholc [DR06] and Arlot, Blanchard, Roquain
[ABR10] can for instance be viewed as such a generalized permutation approach, where the considered
group of transformations is {gε : (x1, . . . , xn) ∈ Rn 7→ (ε1x1, . . . , εnxn), ε = (ε1, . . . , εn) ∈ {−1, 1}n }.
Despite the incontestable assets of the original permutation principle (starting from its simplicity),
it suffers from a high computational cost, and this is why most of authors have given preference to
purely asymptotic tests, based on the limit distribution of the test statistic under (H0 ), when the
sample size is large, or even moderate. The introduction of Monte Carlo methods to approximate the
permutation based quantiles, as well as the development of computer facilities, now make possible the
use of permutation tests within a reasonable computing time (see for instance [15] or Chapter 5 of
this dissertation). But, to our knowledge, such a use of Monte Carlo permutation methods have been
theoretically justified from a nonasymptotic point of view, that is have been proved to respect the
property (Plevel,α ), only since Romano and Wolf’s key lemma [RW05, Lemma 1] (see Lemma 4 below).

In the present chapter, we consider, in the density and the heteroscedastic regression models, a classi-
cal permutation approach. In the Poisson process model, we introduce an exact bootstrap approach,
inspired from the wild bootstrap developed by Mammen [Mam92], and based on Rademacher random
variables as in [DR06] and [ABR10].
Both approaches are in fact rather different in spirit, as the bootstrap approach in the Poisson pro-
cess model could only be viewed as a conditional generalized permutation approach, given the event
(N1, N2) = (n1, n2) for fixed integers n1, n2 ≥ 1. They nevertheless share the common expected condi-
tional invariance property : for any considered test statistic T , under (H0 ), the conditional distribution
of the permuted or bootstrapped test statistic T ε given X̄, is equal to the conditional distribution of
T given X̄. The notation T ε for the permuted or the bootstrapped statistic comes from the classical
notation for Rademacher random variables, which are used in the Poisson process model.

Considering a test statistic T , whose large values lead to reject (H0 ), the corresponding critical value
can be taken as the (1−α) quantile of the conditional distribution of T ε given X̄, denoted by q(X̄)(1−α).
Indeed, from the above conditional invariance property, one deduces that given α in (0, 1), under (H0 ),

Pf1,f2

(
T > q(X̄)(1− α)

∣∣∣X̄) ≤ α,
which implies that the single test φα = 1{T>q(X̄)(1−α)} satisfies (Plevel,α ).
The test φα can even be slightly modified with a randomization tool so that it is exactly of size α,
but as we use in practice φα and more precisely its Monte Carlo version (that is, with Monte Carlo
approximations of q(X̄)(1−α)), it seems quite useless to study the randomized version of φα. Romano
and Wolf’s lemma then allows to prove that replacing q(X̄)(1−α) in φα by a Monte Carlo approximation
qMC(X̄)(1− α) in fact leads to a test φMC

α still satisfying (Plevel,α ) (see Section 3.2.1).
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Our tests are constructed according to the principle of aggregation described in Section 1.1.2. Therefore,
are considered a collection

{
F (2)

0,m, m ∈M
}

of subsets of F2 such that

F (2)
0 := {(f1, f2) ∈ F2, f1 = f2} ⊂ ∩m∈MF (2)

0,m,

and the collection of associated hypotheses {(H0,m ) , m ∈M} such that (H0,m ) (f1, f2) ∈ F (2)
0,m.

Then, for every m inM and every level u in (0, 1), a single test φm,u of

(H0,m ) (f1, f2) ∈ F (2)
0,m against (H1,m ) (f1, f2) 6∈ F (2)

0,m,

satisfying (Plevel,u ), is constructed as above:

φm,u = 1{
Tm>q

(X̄)
m (1−u)

},
where Tm is a test statistic of (H0,m ) against (H1,m ), and q

(X̄)
m (1 − u) is the (1 − u) quantile of

the conditional distribution of T εm given X̄. Given a family of positive weights (wm)m∈M such that∑
m∈Mwm ≤ 1, consider now the collection of single tests

ΦbootFLR
α =

{
φ
m,u

(X̄)
m,α

, m ∈M
}

=
{
1{

Tm>q
(X̄)
m

(
1−u(X̄)

m,α

)}, m ∈M}, (3.1)

with
u(X̄)
m,α = wm sup

{
u, P

(
∃m ∈M, T εm > q(X̄)

m (1− wmu)
∣∣∣X̄) ≤ α} .

The aggregated tests that we introduce and study are of the form (1.1) based on ΦbootFLR
α , that is

Φ̄bootFLR
α = sup

m∈M
φ
m,u

(X̄)
m,α

= sup
m∈M

1{
Tm>q

(X̄)
m

(
1−u(X̄)

m,α

)}. (3.2)

Note that these tests, which are constructed so that they satisfy (Plevel,α ), generalize the aggregated
test based on an instrumental conditional distribution Φ̄condFLR

α defined in Section 1.1.2.

3.1.3 Single hypotheses based on kernels

Assume that F = L1(Y, ν) ∩ L∞(Y) ⊂ L2(Y, ν) for some space Y, equal to X in the density and the
Poisson process frameworks, to the space where the covariates are observed in the regression framework,
and some measure ν on Y. Let ‖.‖2 and 〈., .〉2 be the usual norm and scalar product of L2(Y, ν).
As in Chapter 1, a classical choice for the collection of single hypotheses {(H0,m ) , m ∈M} could be
defined from a collection of subspaces {Sm, m ∈M} of L2(Y, ν) by (H0,m ) ΠSm(f1− f2) = 0, where
ΠSm denotes the orthogonal projection onto Sm with respect to 〈., .〉2.
In our papers [9, 10, 16], this choice of hypotheses is only viewed as a particular case of a much more
general kind of hypotheses, leading to single tests not only closely linked with model selection and
thresholding estimation methods as in Chapter 1, but also based on kernel estimators and reproducing
kernel methods coming from the statistical learning theory, like in [GBR+08, GFHS10, GBR+12,
SSGF13]. Thus, in the following, we consider some collections of hypotheses {(H0,m ) , m ∈M} based
on general symmetric kernels, that is on functions Km : Y × Y → R such that Km(y, y′) = Km(y′, y)
for every y, y′ in Y. Denoting by � the integral operator defined for every symmetric kernel K and
every function g in L2(Y, ν) by

K � g(y) = 〈K(., y), g〉2, ∀y ∈ Y,

(H0,m ) is expressed as
(H0,m ) 〈Km � (f1 − f2), f1 − f2〉2 = 0.
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Three kinds of symmetric kernels are of particular interest.
[Projection kernel] Considering an orthonormal family {ϕl, l ∈ L} for the scalar product 〈., .〉2, such
that supy,y′∈Y

∑
l∈L |ϕl(y)ϕl(y

′)| < +∞, a projection kernel is defined by

K(y, y′) =
∑
l∈L

ϕl(y)ϕl(y
′).

Note that for every function g in L2(Y, ν), K � g = ΠSL(g), where SL is the subspace of L2(Y, ν)
generated by {ϕl, l ∈ L}, and therefore 〈K � (f1 − f2), f1 − f2〉2 = ‖ΠSL(f1 − f2)‖22.
[Approximation kernel] When Y = Rd and ν is the Lebesgue measure, considering a usual kernel
function k in L2(Rd, λ) such that k(−y) = k(y) for every y in Rd, and a vector h = (h1, . . . , hd) of d
positive bandwidths, an approximation kernel is defined by

K(y, y′) =
1∏d
i=1 hi

k

(
y1 − y′1
h1

, . . . ,
yd − y′d
hd

)
,

for y = (y1, . . . , yd), y′ = (y′1, . . . , y
′
d) in Y. Note that for every function g in L2(Y, ν), K � g = kh ∗ g,

where

kh(u1, . . . , ud) =
1∏d
i=1 hi

k

(
u1

h1
, . . . ,

ud
hd

)
,

and ∗ is the usual convolution operator with respect to the measure ν.
[Reproducing kernel] A reproducing kernel (see [SS02] for instance) is such that

K(y, y′) = 〈θ(y), θ(y′)〉HK ,

where θ and HK are a representation function and a RKHS associated with K. Here, 〈., .〉HK denotes
the scalar product of HK . Every considered reproducing kernel K is furthermore assumed to satisfy∫

Y
K2(y, y′)(f1 + f2)(y)(f1 + f2)(y′)dν(y)dν(y′) < +∞, (3.3)

so that by Cauchy-Schwartz inequality, 〈K � (f1 − f2), f1 − f2〉2 is well-defined.
Remark that as f1 and f2 are assumed to be in F = L1(Y, ν) ∩ L∞(Y), (3.3) is also satisfied by
projection kernels based on finite orthonormal families and approximation kernels.
A notable point is that 〈K�(f1−f2), f1−f2〉2 = ‖mf1 −mf2‖

2
HK , wheremf1 = K�f1 =

∫
θ(y)f1(y)dν(y)

and mf2 = K � f2 =
∫
θ(y)f2(y)dν(y).

In the density model where f1 and f2 are densities w.r.t. the measure ν, mf1 and mf2 are the mean
embeddings in the RKHSHK of the distributions f1dν and f2dν respectively (see [BTA04] or [SGF+10]
for instance). The distance ‖mf1 −mf2‖HK is moreover known as the Maximum Mean Discrepancy on
the unit ball in the RKHS HK (see [GBR+08, GFHS10, GBR+12, SSGF13]) .
When the kernel is characteristic (see [SGF+10, SFL11]), the map which assigns its mean embedding
in HK to any probability distribution is injective by definition. Hence, 〈K � (f1 − f2), f1 − f2〉2 = 0 if
and only if f1 = f2, which means that any hypothesis (H0,m) defined from a characteristic reproducing
kernel Km is equivalent to (H0 ).
For any symmetric kernel Km chosen as in [Projection kernel], [Approximation kernel], or [Reproducing
kernel], and satisfying (3.3), a reasonable test statistic of (H0,m) against (H1,m) can be obtained with
an unbiased estimator of 〈Km � (f1 − f2), f1 − f2〉2.
Such test statistics are introduced in each considered model in the following sections, and permuta-
tion or bootstrap-based corresponding critical values are proposed. The obtained single tests are then
integrated in an aggregated test of the form Φ̄bootFLR

α defined in (3.2).
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In statistical learning, in particular in binary classification problems with finite dimensional input
data, kernel and k-Nearest Neighbors plug-in rules are often studied in parallel, as they share many
convergence properties.
In this spirit, we furthermore consider in the density model with X = Rd, single tests inspired from the
k-Nearest Neighbors classification rule (see Chapter 2) that were introduced in [Sch86] and [Hen88].
In [16], we underline the links between these k-NN tests and the kernel based ones, and we propose to
aggregate them in the same way. The resulting Nearest Neighbors aggregated test can then be adapted
to handle functional data, following ideas from [BBW05] and [3].

3.2 Kernel methods in the Poisson process model

Let us consider in this section the following model.

M(2)
Poisson X = (X1,X2) is a pair of independent Poisson processes X1 = {X1

1 , . . . , X
1
N1
} and

X2 = {X2
1 , . . . , X

2
N2
}, observed on a measurable space X, with respective intensities

f1 and f2, with respect to some measure µ on X such that dµ = ndν, for a fixed
nonatomic σ-finite measure ν and a fixed positive integer n.

The measure ν may typically be the Lebesgue measure λ when X is a measurable subset of Rd.
We assume that f1 and f2 both belong to L1(X, ν) ∩ L∞(X) ⊂ L2(X, ν), endowed with its classical
norm ‖.‖2 and scalar product 〈., .〉2 as in Section 3.1.
We consider the problem of testing, from the observation of X = (X1,X2),

(H0 ) f1 = f2 against (H1 ) f1 6= f2.

3.2.1 Single tests with a wild bootstrap approach

LetKm be a symmetric kernel as in [Projection kernel], [Approximation kernel], or [Reproducing kernel],
and satisfying (3.3).
As explained above, a single test statistic of (H0,m ) against (H1,m ) and therefore of (H0 ) against
(H1 ) can be obtained with any unbiased estimator of 〈Km � (f1 − f2), f1 − f2〉2.
When the kernel Km is a projection kernel based on an orthonormal family {ϕl, l ∈ Lm} for 〈., .〉2,
one knows that 〈Km � (f1 − f2), f1 − f2〉2 =

∥∥ΠSLm (f1 − f2)
∥∥2

2
. In this case, it is rather easy to see

that an unbiased estimator of n2〈Km � (f1 − f2), f1 − f2〉2 is given by

Tm =
∑
l∈Lm

((∫
X
ϕldNX1 −

∫
X
ϕldNX2

)2

−
∫
X
ϕ2
l dNX̄

)
,

where dNx stands for the point measure associated with x, defined by (1.20).
The statistic Tm can therefore be taken as test statistic. Noticing that it can also be expressed as

∑
i,j∈{1,...,N}, i6=j

( ∑
l∈Lm

ϕl(Xi)ϕl(Xj)

)
ε0
i ε

0
j ,

where the ε0
i ’s are some marks on X̄, such that ε0

i = 1 if Xi belongs to X1, ε0
i = −1 if Xi belongs to

X2, this test statistic can be generalized as

Tm =
∑

i,j∈{1,...,N}, i6=j

Km(Xi, Xj)ε
0
i ε

0
j . (3.4)
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A wild bootstrap approach as exact bootstrap approach. The main point now is to define an
exact bootstrap approach, that is a bootstrap approach satisfying the conditional invariance property
defined in Section 3.1. A basic permutation approach would not be appropriate here, since it would not
take the randomness ofN1 andN2 into account. Therefore, we turn to another bootstrap type approach,
starting from the remark that under (H0 ), the test statistic Tm is a degenerate U -statistic of order
2. Bootstrapping degenerate U -statistic of order 2 is not an obvious question. A naive application of
Efron’s original bootstrap indeed fails in this case (see [Bre83]), since it leads the bootstrapped statistic
to lose the degeneracy property. Apart from the m out of n bootstrap introduced by Bretagnolle
[Bre83] to overcome this difficulty, Arcones and Giné [AG92] proposed a solution based on Efron’s
original bootstrap, but combined with a centering trick to force the bootstrapped statistic to satisfy
the degeneracy property. The results of Arcones and Giné were then generalized to other kinds of
bootstrap methods, and in particular Bayesian and wild bootstrapped U -statistics were introduced in
[HJ93], [Jan94] and [DM94].
Following [DM94], we introduce a sequence (εi)i∈N of i.i.d. Rademacher variables independent of X̄.
Then a wild bootstrapped version of Tm may be expressed as

∑
i,j∈{1,...,N}, i6=jKm(Xi, Xj)ε

0
i ε

0
jεiεj .

We consider in fact the simpler version

T εm =
∑

i,j∈{1,...,N}, i6=j

Km(Xi, Xj)εiεj , (3.5)

which has the same distribution under (H0 ).
A general result of [DVJ08] allows to prove (see [10, Proposition 1]) that under (H0 ), given X̄,
(ε0

1, . . . , ε
0
N ) has the same conditional distribution as (ε1, . . . , εN ). Hence, the above wild bootstrap

approach satisfies the conditional invariance property: under (H0 ), the conditional distribution of T εm
given X̄, is equal to the conditional distribution of Tm given X̄.
Given a prescribed level α in (0, 1), denoting by q(X̄)

m (1 − α) the (1 − α) quantile of the conditional
distribution of T εm given X̄, we therefore consider the test

φm,α = 1{
Tm>q

(X̄)
m (1−α)

}. (3.6)

As explained in Section 3.1, from the conditional invariance property, it is easily deduced that φm,α
satisfies (Plevel,α ).

Remark that the test φm,α is very close to the MMD tests in the density model, now well developed in
the statistical learning literature, with for instance [GBR+08, GFHS10, GBR+12, SSGF13]. The main
difference lies in the construction of the critical values, here based on an exact bootstrap approach,
while Gretton and co-authors use some approximated quantiles, based on concentration inequalities,
in theory, and Efron’s bootstrap or m out of n bootstrap approaches in practice.

Second kind error rate. Now, with a study of uniform separation rates in view, we state a
nonasymptotic condition on the alternative (f1, f2) guaranteeing that Pf1,f2(φm,α = 0) ≤ β. Un-
der (H1 ), given X̄, the bootstrapped test statistic T εm is a Rademacher chaos whose quantiles can be
upper bounded thanks to results in [dlPG99] or [Lat99], which leads to the following theorem.

Theorem 7 (Fromont, Laurent, Reynaud-Bouret, 2013). Let α, β in (0, 1). Let Km be a symmetric
kernel as in [Projection kernel], [Approximation kernel], or [Reproducing kernel], satisfying (3.3), and
φm,α be the test defined by (3.6). Assume that

∫
X2 K

2
m(x, x′)(f1 + f2)(x)(f1 + f2)(x′)dν(x)dν(x′) is

upper bounded by Cm. There exists some constant κ > 0 such that Pf1,f2(φm,α = 0) ≤ β, as soon as

‖f1 − f2‖22 ≥ inf
r>0

{∥∥(f1 − f2)− r−1Km � (f1 − f2)
∥∥2

2
+

4 + κ ln(2/α)

nr
√
β

√
Cm

}
+

8 ‖f1 + f2‖∞
βn

. (3.7)
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Notice that when Km is a projection kernel based on an orthonormal basis {ϕl, l ∈ Lm}, Cm can be
taken as Cm = C(‖f1 + f2‖1, ‖f1 + f2‖∞)Dm if either #Lm = Dm or

sup
x,x′∈X

∑
l∈Lm

|ϕl(x)ϕl(x
′)| = Dm < +∞, and

∫
X2

∑
l∈Lm

|ϕl(x)ϕl(x
′)|

2

(f1 +f2)(x′)dν(x)dν(x′) < +∞.

(3.8)
When Km is an approximation kernel based on a kernel function km and a vector of bandwidth
hm = (hm,1, . . . , hm,d), Cm can be taken as ‖f1 + f2‖∞ ‖f1 + f2‖1 ‖km‖

2
2 /
∏d
i=1 hm,i. Hence in these

two cases, by taking r = 1 in (3.7), the right hand side of the inequality reproduces a bias-variance
decomposition which is known to lead to sharp upper bounds for the uniform separation rates over
particular classes of alternatives (see Chapter 1 or [Tsy09] for instance).
When Km is a reproducing kernel proportional to a projection or approximation kernel, then the
normalization factor r−1 can be chosen such that

∥∥(f1 − f2)− r−1Km � (f1 − f2)
∥∥

2
is still a bias term.

We thus recover for such reproducing kernels, like the Gaussian and Laplacian ones commonly used in
statistical learning theory, a classical bias-variance decomposition.

Assume now that X = Rd,
∫
X f1(x)dν(x) =

∫
X f2(x)dν(x) = 1, and that Km is a bounded measurable

characteristic reproducing kernel such that Km(x, x) is constant. This last assumption is not unusual
since it is satisfied by any normalized or translation-invariant kernel (see [SS02, pages 46-47, 57], or
[SGF+10, SFL11] for instance). Moreover, as specified in [SGF+10] for instance, bounded continuous
characteristic and translation-invariant reproducing kernels exist, at least in Rd, where Bochner’s theo-
rem enables to characterize them. In this case, we prove (see [10, Theorem 2]) that for n large enough,
there exists C(α, β) such that Pf1,f2(φm,α = 0) ≤ β as soon as

‖mf −mg‖2HKm ≥
C(α, β)

n
.

This result allows to obtain a uniform separation rate, for the weak distance between f1dν and f2dν
equal to ‖mf1 −mf2‖HKm , of the same order as the usual parametric separation rate, that is of order
n−1/2. In this sense, it is comparable to previous results of Giné [Gin75] and Wellner [Wel79], where
the same parametric separation rate is obtained, but for other weak distances between distributions.
We refer the reader to [SSGF13] for a study of connexions between ‖mf1 −mf2‖HKm and several more
classical weak distances between distributions.

Monte Carlo approximations. Studying our tests from a nonasymptotic point of view poses the
additional question of the exact loss in first and second kind error rates due to the Monte Carlo
approximation of q(X̄)

m (1− α), which is used in practice. We address this question in [10].

Let B a fixed number of Monte Carlo iterations, large enough so that α(B + 1) ≥ 1. Given X̄ and
therefore N , let us introduce a set {εb, b ∈ {1, . . . , B}} of B independent samples εb = (εb1, . . . , ε

b
N ) of N

i.i.d. Rademacher random variables. Let, for b in {1, . . . , B}, T εbm =
∑

i,j∈{1,...,N}, i6=jKm(Xi, Xj)ε
b
iε
b
j .

Denoting by
(
T ε

(1)

m , . . . , T ε
(B+1)

m

)
the order statistic associated with

(
T ε

1

m , . . . , T
εB
m , Tm

)
, given X̄, we set

qMC(X̄)
m (1− α) = T ε

( d(1−α)(B+1)e )

m .

The Monte Carlo single kernel-based test that we consider in the present dissertation is

φMC
m,α = 1{

Tm>q
MC(X̄)
m (1−α)

}. (3.9)

Note that this test is slightly different from the one considered in [10, Proposition 3], so that it has a
better control of the first kind error rate.
The following lemma due to Romano and Wolf is of fundamental interest when considering Monte
Carlo approximations of exact bootstrap approaches, so it seems important to us to recall it.



64 CHAPTER 3. TWO-SAMPLE PROBLEMS

Lemma 4 (Romano, Wolf, Lemma 1 in [RW05]). If V1, ..., VB+1 are B + 1 exchangeable real random
variables, then for all u in [0, 1],

P

(
1

B + 1

(
1 +

B∑
i=1

1Vi≥VB+1

)
≤ u

)
≤ u.

Noticing that

Pf1,f2

(
Tm > T ε

( d(1−α)(B+1)e )

m

∣∣∣X̄) ≤ P

(
B∑
b=1

1
T εbm ≥Tm

≤ α(B + 1)− 1

∣∣∣∣∣X̄
)
,

and that given X̄, under (H0 ), the variables
(
T ε

1

m , . . . , T
εB
m , Tm

)
are exchangeable, Lemma 4 can be

applied and φMC
m,α is proved to satisfy (Plevel,α ).

A nonasymptotic condition guaranteeing that Pf1,f2(φMC
m,α = 0) ≤ β can also be obtained, using Ho-

effding’s concentration inequality as in the proof of [10, Proposition 4].

3.2.2 Aggregated tests

Given a collection of kernels {Km, m ∈M}, we now consider the aggregated test Φ̄bootFLR
α of (3.2),

based on the single tests φm,α defined by (3.6), and the above exact wild bootstrap approach.
Note that such an aggregated test may be viewed as a multiple kernel procedure in the spirit of multiple
kernel learning which is a current challenging topic in machine learning. Indeed, it allows to consider
several kernels, instead of a single one (whose choice or calibration is always a major and thorny
question), and to combine them in an automatic data-driven way, here through the individual levels
u

(X̄)
m,α involved in Φ̄bootFLR

α .
An alternative, proposed in [SGF+10], is to consider the test statistic supm∈M Tm, and to reject
(H0 ) when this test statistic is larger than a given critical value, either constructed via concentration
inequalities, or classical bootstrap approaches. Such a test, close in spirit to Kolmogorov-Smirnov tests
(see [VdVW96] for instance) would however not achieve the same nonasymptotic properties, expressed
as oracle type inequalities or minimax adaptivity results, as our aggregated test Φ̄bootFLR

α .

Since the aggregated test Φ̄bootFLR
α is especially constructed so that it satisfies (Plevel,α ), let us now

focus on its nonasymptotic properties from the second kind error rate angle. We first obtained in [10]
the following oracle type result.

Theorem 8 (Fromont, Laurent, Reynaud-Bouret, 2013). Let α, β ∈ (0, 1). Let {Km,m ∈ M} be a
collection of kernels, chosen as in one of the two following cases, and {wm,m ∈M} be a collection of
positive weights such that

∑
m∈Mwm ≤ 1.

[Multiple projection kernel] Let {Sm,m ∈ M} be a finite collection of linear subspaces of L2(X, ν),
spanned by orthonormal bases denoted by {ϕl, l ∈ Lm} respectively. Assume either that Sm has finite
dimension Dm or that (3.8) holds. We set, for all m in M, Km(x, x′) =

∑
l∈Lm ϕl(x)ϕl(x

′), and we
introduce the condition:

‖f1 − f2‖22 ≥ inf
m∈M

{
‖(f1 − f2)−ΠSm(f1 − f2)‖22 +

C(β, ‖f1 + f2‖1, ‖f1 + f2‖∞)
(C(α) + ln(1/wm))

√
Dm

n

}
. (3.10)

[Multiple approximation kernel] If X = Rd and ν is the Lebesgue measure on Rd, let {km1 , m1 ∈M1}
be a collection of kernel functions such that

∫
X k

2
m1

(x)dν(x) <∞, km1(x) = km1(−x), and a collection
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{hm2 , m2 ∈ M2} of vectors hm2 = (hm2,1, . . . , hm2,d) of d positive numbers. We set M =M1 ×M2,
and for all m = (m1,m2) inM, x = (x1, . . . , xd), x′ = (x′1, . . . , x

′
d) in Rd,

Km(x, x′) = km1,hm2
(x− x′) =

1∏d
i=1 hm2,i

km1

(
x1 − x′1
hm2,1

, . . . ,
xd − x′d
hm2,d

)
.

We introduce the following condition:

‖f1 − f2‖22 ≥ inf
m=(m1,m2)∈M

{∥∥∥(f1 − f2)− km1,hm2
∗ (f1 − f2)

∥∥∥2

2
+

C (β, ‖f1 + f2‖∞ , ‖f1 + f2‖1 , ‖km1‖2 )
(C(α) + ln(1/wm))

√∏d
i=1 h

−1
m2,i

n

}
. (3.11)

Let Φ̄bootFLR
α be the test given by (3.2), based on the single tests φm,α defined in (3.6) associated with

the weights wm, and the above exact wild bootstrap approach. Then Pf1,f2

(
Φ̄bootFLR
α = 0

)
≤ β, if either

(3.10) in [Multiple projection kernel], or (3.11) in [Multiple approximation kernel] is satisfied, for some
constants C(α), C(β, ‖f1 + f2‖∞ , ‖f1 + f2‖1), and C(β, ‖f1 + f2‖∞ , ‖f1 + f2‖1 , ‖km1‖2).

Comparing this result with the one obtained in Theorem 7 for the proposed constants Cm in the
projection and approximation kernels cases, one can see that considering the aggregated test instead of
a single one, allows to obtain the infimum over all m inM in the right hand side of (3.10) and (3.11) at
the price of the additional term ln(1/wm). This result can thus be viewed as an oracle type property:
indeed, without knowing (f1−f2), one has that the uniform separation rate of the aggregated test is of
the same order as the smallest uniform separation rate of the involved single kernel tests, up to factors
ln(1/wm). It is used to prove that, for well-chosen projection or approximation kernels, the aggregated
test has minimax adaptivity properties.

Minimax adaptivity over Besov and weak Besov spaces. Let us here assume that X = [0, 1]
and ν is the Lebesgue measure on [0, 1]. Consider, as in Section 1.4.1, the Haar basis {ϕ0, ψ(j,k), j ∈
N, k ∈ {0, . . . , 2j − 1}} of L2([0, 1], ν) defined by ϕ0(x) = 1[0,1](x), and ψ(j,k)(x) = 2j/2ψ(2jx − k),
with ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x).
We introduce here slightly different versions of the (weak) Besov bodies introduced in (1.22) and (1.23)
in Chapter 1, adapted to the present two-sample problem. For s, s′, R,R′ > 0, let

B(2)
s,2,∞(R) =

{
(f1, f2) ∈ F2, f1 − f2 = α0ϕ0 +

∑
j∈N

∑2j−1
k=0 α(j,k)ψ(j,k),

α2
0 ≤ R2, ∀j ∈ N,

∑2j−1
k=0 α2

(j,k) ≤ R
22−2js

}
,

and

wB(2)
s′ (R′) =

{
(f1, f2) ∈ F2, f1 − f2 = α0ϕ0 +

∑
j∈N

∑2j−1
k=0 α(j,k)ψ(j,k),

∀t > 0, α2
01α2

0≤t +
∑

j∈N
∑2j−1

k=0 α2
(j,k)1α2

(j,k)
≤t ≤ R′2t

2s′
2s′+1

}
.

For s, s′, R,R′ > 0, and R′′ ≥ 2, some levels α and β in (0, 1) such that α + β ≤ 0.59, and the metric
d2 associated with the norm ‖.‖2, mSRα,β

d2

(
B(2)
s,2,∞(R) ∩ wB(2)

s′ (R′) ∩ (L∞(R′′))2 ) has the same lower
bound as mSRα,β

d2

(
Bs,2,∞(R)∩wBs′(R′)∩L∞(R′′)

)
in Theorem 3. This lower bound is directly deduced

from the arguments of the proof of Theorem 3 (see [11, Section 5] for more details).

In the spirit of the minimax adaptive tests proposed in [7] (see Section 1.4), we consider the test
Φ̄bootFLR
α of Theorem 8, defined from a collection of projection kernels, based on either nested or

nonnested subsets of the Haar basis. Let us introduce:
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— K0(x, x′) = ϕ0(x)ϕ0(x′),
— K(j,k)(x, x

′) = ψ(j,k)(x)ψ(j,k)(x
′) for every j in N, k in {0, . . . , 2j − 1},

— KJ(x, x′) = ϕ0(x)ϕ0(x′) +
∑

j∈{0,...,J−1}, k∈{0,...,2j−1} ψ(j,k)(x)ψ(j,k)(x
′), for every J ≥ 1.

For some integer J̄ such that 2J̄ ≥ n2, let Φ̄nested
α/2 stand for the test Φ̄bootFLR

α/2 , defined with the
collection of kernels {KJ , J ∈ {0, . . . , J̄}}, and with corresponding weights wJ = 6/(π2(J + 1)2) for
J in {0, . . . , J̄}. Let moreover Φ̄nonnested

α/2 be the test Φ̄bootFLR
α/2 defined with the collection of kernels

{K0} ∪
{
K(j,k), j ∈ N, k ∈ {0, . . . , 2j − 1}

}
, and with corresponding weights w0 = 1/2, w(j,k) =

3/(2j(j + 1)2π2) for j in N, k in {0, . . . , 2j − 1}.

Assuming that ln lnn ≥ 1, from Theorem 8, we prove in [10, Corollary 1] that for any s, s′, R,R′, R′′ > 0,
SRβd2

(
Φ̄nested
α/2 ∨ Φ̄nonnested

α/2 ,B(2)
s,2,∞(R) ∩ wB(2)

s′ (R′) ∩ (L∞(R′′))2 ) is upper bounded by

(i) C(s, s′, R,R′, R′′, α, β) (ln lnn/n)2s/( 4s+1 ) if s ≥ s′/2,
(ii) C(s, s′, R,R′, R′′, α, β) (lnn/n)s

′/( 2s′+1 ) if s < s′/2.

In the same way as in Section 1.4, let us introduce

F (2)
1

(i)

=
{
B(2)
s,2,∞(R) ∩ wB(2)

s′ (R′) ∩
(
L∞(R′′)

)2
, s ≥ (s′/2) ∨ (s′/(2s′ + 1))

}
,

and

F (2)
1

(ii)

=
{
B(2)
s,2,∞(R) ∩ wB(2)

s′ (R′) ∩
(
L∞(R′′)

)2
, s < s′/2, s′ > 1/2

}
.

Then, for n large enough, Φ̄nested
α/2 ∨ Φ̄nonnested

α/2 is minimax adaptive over F (2)
1

(i)

∪F (2)
1

(ii)

, with no price

to pay for adaptivity on F (2)
1

(ii)

. Notice that the price we pay here for adaptivity over F (2)
1

(i)

involves
a (ln lnn) factor instead of the usual (ln lnn)1/2 one, due to the control of the bootstrapped quantiles.

Minimax adaptivity over Sobolev spaces. Let us now assume that X = Rd, ν is the Lebesgue
measure on Rd, and introduce for s > 0 the class of alternatives based on a d dimensional Sobolev ball:

S(2)
s,2,d(R) =

{
(f1, f2) ∈ F2,

∫
Rd
‖u‖2sd |f̂1 − f2(u)|2dν(u) ≤ (2π)dR2

}
,

where ‖u‖d denotes the euclidean norm of u and f̂1 − f2 denotes the Fourier transform of f1 − f2:
f̂1 − f2(u) =

∫
Rd(f1 − f2)(x)ei〈x,u〉dν(x).

We here consider the test Φ̄bootFLR
α , defined as in Theorem 8 from a collection of approximation kernels

adapted to an isotropic class of alternatives. Let M1 = N \ {0} and M2 = N. For m1 in M1, km1

denotes a kernel function in L1(Rd, ν) ∩ L2(Rd, ν) such that km1(x) = km1(−x). For m2 in M2, let
hm2 = (2−m2 , . . . , 2−m2) and for m = (m1,m2) inM =M1 ×M2, Km(x, x′) = km1,hm2

(x− x′).
Let Φ̄Iso

α be the test Φ̄bootFLR
α defined with the collection of kernels {Km, m ∈ M} and wm =

(6/(π2m1(m2 + 1)))2 for m = (m1,m2) inM.
From Theorem 8, we deduce in [10, Corollary 2] that if ln lnn ≥ 1, for any s,R,R′, R′′ > 0, then

SRβd2

(
Φ̄Iso
α ,S(2)

s,2,d(R) ∩
(
L1(R′)

)2 ∩ (L∞(R′′)
)2) ≤ C(s, α, β,R,R′, R′′, d)

(
ln lnn

n

) 2s
4s+d

.

When d = 1, the rate n−2s/( 4s+d ) is known to be the minimax separation rate, and an extra (ln lnn)1/2

factor the price to pay for adaptivity, in many models over Sobolev classes (see Chapter 1). Hence,
the test Φ̄Iso

α can be said to be minimax adaptive over the collection of classes S(2)
s,2,d(R)∩ (L1(R′))2 ∩

(L∞(R′′))2, for s,R,R′, R′′ > 0, when d = 1, with a slightly more important loss of efficiency due to
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adaptivity than usual. From the results of [HS01], it can be conjectured that this is also true when
d > 1.
Notice that the test Φ̄Iso

α can also be defined with nonintegrable kernels such as Pinsker’s kernel or the
sinc kernel (see [Tsy09] or [10]), so that it still satisfies the same result.

Minimax adaptivity over anisotropic Nikol’skii-Besov spaces. Let us still assume that X = Rd
and ν is the Lebesgue measure on Rd. We consider anisotropic classes of alternatives, more precisely
classes of alternatives (f1, f2) such that the difference (f1 − f2) belongs to a Nikol’skii-Besov ball. Let
for s = (s1, . . . , sd) in (0,+∞)d, and R > 0,

N (2)
s,2,d(R) =

{
(f1, f2) ∈ F2, (f1 − f2) has continuous partial derivatives Dbsici

of order bsic w.r.t ui, and ∀i = 1 . . . d, u1, . . . , ud, v ∈ R,∥∥∥Dbsici (f1 − f2)(u1, . . . , ui + v, . . . , ud)−D
bsic
i (f1 − f2)(u1, . . . , ud)

∥∥∥
2
≤ R|v|si−bsic

}
.

We introduce another test of the form Φ̄bootFLR
α , defined as in Theorem 8 from a collection of approx-

imation kernels, but adapted here to anisotropic spaces.
Let Σ = (Σ1, . . . ,Σd), where each Σi is a positive integer, and let k1 be a kernel function such that for
x = (x1, . . . , xd) in Rd, k1(x) =

∏d
i=1 k1,i(xi), with, for every i = 1 . . . d and j = 1 . . .Σi,

— k1,i(xi) = k1,i(−xi),
— k1,i ∈ L1(R, λ) ∩ L2(R, λ),
—
∫
R k1,i(xi)dλ(xi) = 1,

—
∫
R |k1,i(xi)||xi|Σidλ(xi) < +∞

—
∫
R k1,i(xi)x

j
idλ(xi) = 0.

We set M1 = {1} and M2 = Nd, and for m2 = (m2,1, . . . ,m2,d) in M2, hm2,i = 2−m2,i . For m =
(m1,m2) inM =M1×M2, let Km(x, x′) = km1,hm2

(x−x′). The test Φ̄Aniso
α is of the form Φ̄bootFLR

α ,
defined with the collection of kernels {Km, m ∈ M} and w(1,m2) =

∏d
i=1(6/(π2(m2,i + 1)2)) for m2

in M2. From Theorem 8, we deduce in [10, Corollary 3] that if ln lnn ≥ 1, for s = (s1, . . . , sd) in∏d
i=1(0,Σi], R,R′, R′′ > 0,

SRβd2

(
Φ̄Aniso
α ,N (2)

s,2,d(R) ∩
(
L1(R′)

)2 ∩ (L∞(R′′)
)2) ≤ C(s, α, β,R,R′, R′′, d)

(
ln lnn

n

) 2s̄
4s̄+1

,

with 1/s̄ =
∑d

i=1 1/si.
When d = 1, from [Ing00], we know that in the density model, for the problem of testing uniformity,
the minimax adaptive separation rate over a Nikol’skii class with smoothness parameter s is of order
(
√

ln lnn/n)2s/(4s+1). We find here an upper bound similar to this univariate rate, but where s is
replaced by s̄, which does not seem unusual (see [GL11] in estimation problems) and

√
ln lnn replaced

by (ln lnn) (due to the control of the bootstrapped quantile as in the two above cases). Notice that
the minimax separation rates obtained in [IS11] over anisotropic periodic Sobolev balls, but in the
Gaussian white noise model, are of order (

√
ln lnn/n)2s̄/(4s̄+1).

3.2.3 Experimental results

A simulation study has been proposed in [11] and completed in [8] and [9], to evaluate the performance
of the above aggregated tests based on either projection or approximation kernels.
We compare these tests with existing conditional tests, that is tests initially devoted to the two-sample
problem in the density model, usually referred to as homogeneity tests, used given the number of
observed points of the Poisson processes N1 and N2. Note that such conditional tests only allow to
test the proportionality (and not the equality) of two intensities.
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We first consider univariate frameworks, with X = [0, 1] or X = R, n = 100, ν = λ and α =
0.05. In these cases, we focus on Φ̄nested

α , Φ̄nonnested
α , and Φ̄Iso

α defined in the above section. The
test Φ̄nested

α is implemented with J̄ = 6 and Φ̄nonnested
α with a finite collection of kernels {K0} ∪{

K(j,k), j ∈ {0, . . . , 6}, k ∈ {0, . . . , 2j − 1}
}
. The test Φ̄Iso

α is implemented with either Gaussian, or
Epanechnikov kernels, with a collection of bandwidths equal to {1/24, 1/16, 1/12, 1/8, 1/4, 1/2} and
some weights that are all equal to 1/6.
These tests are compared with a conditional Kolmogorov-Smirnov test and a conditional MMD test,
based on a Gaussian kernel with a heuristic choice for the parameter of the kernel, and a critical
value obtained from Efron’s bootstrap approach as in [GBR+08], whose corresponding matlab code is
available on Gretton’s web page http://www.gatsby.ucl.ac.uk/∼gretton/software.html.
The first kind error rates or sizes are estimated by Monte Carlo methods for several forms of intensities,
taken as the densities of the uniform distribution on [0, 1], a Beta distribution on [0, 1], the standard
Gaussian distribution on R, and a Laplace distribution on R. The obtained estimated sizes of the tests
fluctuate between: 0.042 and 0.053 for the conditional Kolmogorov-Smirnov test, 0.048 and 0.052 for
the MMD test, 0.047 and 0.049 for Φ̄nested

α , 0.043 and 0.045 for Φ̄nonnested
α , 0.051 and 0.054 for Φ̄Iso

α

with the Gaussian kernel, 0.05 and 0.55 for Φ̄Iso
α with the Epanechnikov kernel.

The second kind error rates and powers are estimated for f1 equal to the above densities, and f2

equal to alternatives to these densities. The main point that we observe is that when f1 − f2 is very
irregular, our tests perform better, even sometimes much better, than the two other ones, and that it
is particularly true for the test Φ̄Iso

α with the Epanechnikov kernel. The only case where the MMD test
clearly outperforms ours involves more regular differences of intensities.

We then consider multivariate frameworks, with X = [0, 1]2 or X = R2, n = 200, ν = λ and α = 0.05.
We here focus on Φ̄Iso

α with Gaussian and Epanechnikov kernels, with a collection of bandwidths still
equal to {1/24, 1/16, 1/12, 1/8, 1/4, 1/2} and the weights still equal to 1/6. These tests are compared
with the conditional MMD test as above, but also with the conditional Cramer test proposed in [BF04],
and a variant proposed in [Bah96], both available in the package cramer of R.
The sizes are estimated by Monte Carlo methods for two different intensities, taken as the densities of
the uniform distribution on [0, 1]2, and the standard Gaussian distribution on R2.
The obtained estimated sizes of the tests fluctuate between 0.043 and 0.06 for the MMD test, 0.048
and 0.052 for the Cramer test, 0.046 and 0.052 for the Bahr test, and are around 0.0485 and 0.046 for
Φ̄Iso
α with the Gaussian kernel and the Epanechnikov kernel respectively.

As for the estimated powers, with f1 equal to the uniform and standard Gaussian densities, and f2

equal to various alternatives to these densities, we observe the same phenomenon as in the univariate
case. The test Φ̄Iso

α is still more powerful than the other ones when f1 − f2 is irregular.

In situations where the user does not know whether the difference between the underlying intensities
of the Poisson processes are irregular or not, a good compromise would be to aggregate several of the
studied tests, for instance the MMD test and Φ̄Iso

α with the Epanechnikov kernel.

Our tests were used in a real data study for l’INSEE in [8], about the spatial representativeness of
services like schools, medical services, pharmacies, shops, restaurants, or banks in the city of Rennes.
The main questions were to know whether two different services can be assumed to be identically
spatially distributed, and whether the spatial distribution of one particular service is homogeneous
with respect to houses, in the whole city or in a restricted area.

3.2.4 Tools and sketch of proof

Theorem 7 is central to the study, since the oracle type inequalities given in Theorem 8 directly follow
from it. We give here a sketch of proof for this theorem, which is rather general, and can be applied
to other single tests based on exact bootstrap approaches (see the PhD thesis of Mélisande Albert for
instance).
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Denoting by qm,α(1− β/2) the (1− β/2) quantile of the conditional quantile q(X̄)
m (1− α), one has

Pf1,f2 (φm,α = 0) = Pf1,f2

(
Tm ≤ q(X̄)

m (1− α)
)

≤ β

2
+ Pf1,f2 (Tm ≤ qm,α(1− β/2)) .

[First step] The first step of the proof is to find an upper bound for qm,α(1− β/2).
Given X̄, T εm is a homogeneous Rademacher chaos, as defined by de la Peña and Giné [dlPG99]. From
[dlPG99, Corollary 3.2.6] and Markov’s inequality, we deduce that there exists κ > 0 such that

q(X̄)
m (1− α) ≤ κ ln(2/α)

 ∑
i,j∈{1,...,N}, i6=j

K2
m(Xi, Xj)

1/2

.

So qm,α(1−β/2) is upper bounded by the (1−β/2) quantile of κ ln(2/α)
(∑

i,j∈{1,...,N},i 6=jK
2
m(Xi, Xj)

)1/2.
Using Markov’s inequality again and [DVJ08, Lemma 5.4 III] on factorial moments measures, we obtain
that

qm,α(1− β/2) ≤ κ ln (2/α)n

√
2Cm
β

.

[Second step] The second step consists in deducing from the above control of qm,α(1 − β/2) and a
concentration inequality for Tm, a condition guaranteeing that Pf1,f2 (Tm ≤ qm,α(1− β/2)) ≤ β/2.
From the above first step, we deduce on the one hand that

Pf1,f2 (Tm ≤ qm,α(1− β/2)) ≤ Pf1,f2

(
Tm ≤ κ ln (2/α)n

√
2Cm
β

)
.

Now, on the other hand, from Markov’s inequality, it is obvious that

Pf1,f2

Tm ≤ Ef1,f2 [Tm ]−

√
2Varf1,f2 [Tm ]

β

 ≤ β/2.
Hence, a condition guaranteeing that Pf1,f2 (Tm ≤ qm,α(1− β/2)) is less than β/2, and therefore
Pf1,f2 (φm,α = 0) ≤ β, can be expressed as

κ ln (2/α)n

√
2Cm
β
≤ Ef1,f2 [Tm ]−

√
2Varf2,f2 [Tm ]

β
.

As Ef1,f2 [Tm ] = n2〈Km � (f1 − f2), f1 − f2〉2 and (by [DVJ08, Lemma 5.4 III] again)

Varf2,f2 [Tm ] ≤ 4n3 ‖Km � (f1 − f2)‖22 ‖f1 + f2‖∞ + 2nCm,

this condition can be replaced by

n2〈Km � (f1 − f2), f1 − f2〉2 ≥ κ ln (2/α)n

√
2Cm
β

+

√
8n3 ‖Km � (f1 − f2)‖22 ‖f1 + f2‖∞ + 4nCm

β
.

[Third step] Basic inequalities are finally used to give to the above condition, the form which appears
in Theorem 7.

Concentration inequalities are therefore the key tools of our study. Here we use Markov’s inequality
and the exponential inequality of [dlPG99] to control the quantile of the Rademacher chaos. Using
more precise inequalities such as the concentration inequality for U -statistics of order 2 of [HRB03]
instead of Markov’s inequality, and the inequality of [Lat99] instead of the one of [dlPG99], would
slightly improve the obtained results, but would not change the order of the final uniform separation
rates for the aggregated tests.
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3.3 Kernel methods in density and regression models

In this section, we focus on two-sample problems studied in [9], with Béatrice Laurent, Matthieu Lerasle,
and Patricia Reynaud-Bouret. We consider the following density and heteroscedastic regression models.

M(2)
density X = (X1,X2) is a pair of independent sets X1 = {X1

1 , . . . , X
1
N1
} and X2 =

{X2
1 , . . . , X

2
N2
} (N1 and N2 are fixed positive integers) of independent random vari-

ables, observed on a measurable space X, with respective densities f1 and f2, with
respect to a nonatomic σ-finite measure ν on X.

The measure ν may typically be the Lebesgue measure λ when X is a measurable subset of Rd.
Note that this density model corresponds to a conditional Poisson process model M(2)

Poisson, given
#X1 = N1 and #X2 = N2. Conversely, a Poisson process model can be viewed as a density model,
but with random sizes N1 and N2, with Poisson distributions.
This parallel may be useful, from both theoretical and practical points of view. We have already seen
that a Poissonization trick may be used to study Efron’s bootstrap approach, in order to construct
i.i.d weights close to the multinomial weights of Efron’s bootstrap resampling plan. It also allows
to easily simulate Poisson processes of M(2)

Poisson, by a two step simulation procedure. The first step
consists in simulating the Poisson variables N1 and N2, and the second step in simulating i.i.d. samples(
X1

1 , . . . , X
1
N1

)
and

(
X2

1 , . . . , X
2
N2

)
with densities f1/

∫
X f1dν and f2/

∫
X f2dν with respect to ν. This

procedure was used in the simulation study described in Section 3.2.3.

M(2)
regression X = (X1,X2) is a pair of independent sets X1 = {X1

1 , . . . , X
1
N1
} and X2 =

{X2
1 , . . . , X

2
N2
} (N1 and N2 are fixed positive integers) of independent random vari-

ables, such that: for every i ∈ {1, . . . , N1} X1
i = (Y 1

i , Z
1
i ), with Z1

i = f1(Y 1
i ) +

σ(Y 1
i )ξ1

i , and for every i ∈ {1, . . . , N2}, X2
i = (Y 2

i , Z
2
i ), with Z2

i = f2(Y 2
i )+σ(Y 2

i )ξ2
i .

The Y 1
i ’s and Y 2

i ’s are observed in a measurable space Y, with known distribution
PY , and Z1

i and Z
2
i take their values in a measurable subset of R. The couples (Y 1

i , ξ
1
i )

and (Y 2
i , ξ

2
i ) are identically distributed, and E[ξ1

i |Y 1
i ] = 0, E[(ξ1

i )2|Y 1
i ] = 1.

We assume that f1 and f2 both belong to F = L1(X, ν) ∩ L∞(X) ⊂ L2(X, ν) in the density model, to
F = L1(Y, PY ) ∩ L∞(Y) ⊂ L2(Y, PY ) in the regression model. L2(X, ν) and L2(Y, PY ) are endowed
with their classical norm ‖.‖2 and scalar product 〈., .〉2 as in Section 3.1.

We consider the problem of testing, from the observation of X = (X1,X2),

(H0 ) f1 = f2 against (H1 ) f1 6= f2.

Since the variance function σ2 is the same for both signals in the regression model, the correspond-
ing two-sample problem amounts to the problem of testing the equality of densities for the samples
(X1

1 , . . . , X
2
N1

) and (X2
1 , . . . , X

2
N2

). The two-sample problems in the above two models are therefore
equivalent, and this is the reason why they are presented together.
The notation X̄ = {X1, . . . , XN } still stands for the pooled set X1∪X2, with cardinality N = N1+N2,
with Xi = (Yi, Zi) in the regression model.

3.3.1 Kernel-based test statistics

In order to shorten the mathematical expressions of the present section, let us fix here a few other
notations. We set

aN1,N2 =

(
1

N1(N1 − 1)
− cN1,N2

)1/2

and bN1,N2 = −aN2,N1 = −
(

1

N2(N2 − 1)
− cN1,N2

)1/2

,
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where cN1,N2 = 1/ (N1N2(N1 +N2 − 2)) . Then, for every i in {1, . . . , N }, let ε0
i be a mark defined

by ε0
i = aN1,N2 if Xi ∈ X1 and ε0

i = bN1,N2 if Xi ∈ X2.

LetKm be a symmetric kernel as in [Projection kernel], [Approximation kernel], or [Reproducing kernel],
and satisfying (3.3), replacing Y by X in the density model and ν by PY in the regression model.
As above, a single test statistic of (H0,m ) against (H1,m ) and therefore of (H0 ) against (H1 ) is
obtained by constructing an unbiased estimator of 〈Km � (f1 − f2), f1 − f2〉22.
Inspired by the above expression of Tm, we consider:

Ṫm =
∑

i,j∈{1,...,N}, i6=j

Km(Xi, Xj)
(
ε0
i ε

0
j + cN1,N2

)
, (3.12)

in the density model, or

Ṫm =
∑

i,j∈{1,...,N}, i6=j

ZiZjKm(Yi, Yj)
(
ε0
i ε

0
j + cN1,N2

)
,

in the regression model. In [9, Proposition 1], Ṫm is proved to be an unbiased estimator of 〈Km � (f1−
f2), f1 − f2〉2 in both modelsM(2)

density andM(2)
regression, and therefore be a reasonable test statistic.

3.3.2 The permutation approach

It is well-known that the permutation approach is particularly adapted to the two-sample problem in
the density problem, and that it defines an exact bootstrap approach. Hence, we introduce a random
permutation ΠN uniformly distributed on the group SN of permutations of the set {1, . . . , N }, and
we set

εi =

 aN1,N2 if ΠN (i) ∈ {1, . . . , N1},

bN1,N2 if ΠN (i) ∈ {N1 + 1, . . . , N}.

We then define:
Ṫ εm =

∑
i,j∈{1,...,N}, i6=j

Km(Xi, Xj) (εiεj + cN1,N2) ,

in the density model, or

Ṫ εm =
∑

i,j∈{1,...,N}, i6=j

ZiZjKm(Yi, Yj) (εiεj + cN1,N2) ,

in the regression model.

One can check in both models that under (H0 ), the conditional distribution of the permuted statistic
Ṫ εm given X̄, is equal to the conditional distribution of Ṫm given X̄, that is the permutation approach
described here satisfies the conditional invariance property defined in Section 3.1.
Hence, given a prescribed level α in (0, 1), denote by q̇(X̄)

m (1−α) the (1−α) quantile of the conditional
distribution of Ṫ εm given X̄, and consider the test

φ̇m,α = 1{
Ṫm>q̇

(X̄)
m (1−α)

}. (3.13)

As explained in Section 3.1, from the conditional invariance property, it is easily deduced that the test
φ̇m,α satisfies (Plevel,α ).
Note that this test can in fact be expressed in a simpler manner, removing the term cN1,N2 in the initial
test statistic Ṫm as well as in the permuted one Ṫ εm.
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3.3.3 Kernel-based tests with Monte Carlo approximation

The issue of the Monte Carlo approximation of q̇(X̄)
m (1 − α) can be solved in the same way as in

Section 3.2 as concerns the first kind error rate control. Indeed, considering a fixed number B of Monte
Carlo iterations, large enough so that α(B+ 1) ≥ 1, let us introduce an i.i.d. sample of B independent
random permutations {Πb

N , b ∈ {1, . . . , B }} uniformly distributed on the group SN of permutations
of the set {1, . . . , N }, independent of X̄. Let us set:

εbi =

 aN1,N2 if Πb
N (i) ∈ {1, . . . , N1},

bN1,N2 if Πb
N (i) ∈ {N1 + 1, . . . , N},

and for b in {1, . . . , B },

Ṫ ε
b

m =
∑

i,j∈{1,...,N}, i6=j

Km(Xi, Xj)
(
εbiε

b
j + cN1,N2

)
,

in the density model, or

Ṫ ε
b

m =
∑

i,j∈{1,...,N}, i6=j

ZiZjKm(Yi, Yj)
(
εbiε

b
j + cN1,N2

)
,

in the regression model.
Denoting by

(
Ṫ ε

(1)

m , . . . , Ṫ ε
(B+1)

m

)
the order statistic associated with

(
Ṫ ε

1

m , . . . , Ṫ
εB
m , Ṫm

)
, given X̄, we set

q̇MC(X̄)
m (1− α) = Ṫ ε

( d(1−α)(B+1)e )

m .

Considering the Monte Carlo single kernel-based test defined by

φ̇MC
m,α = 1{

Ṫm>q̇
MC(X̄)
m (1−α)

}, (3.14)

then Romano and Wolf’s lemma (see Lemma 4 above) allows to prove that φ̇MC
m,α satisfies (Plevel,α ).

3.3.4 Aggregated tests

Of course, these single tests are not intended to be used as such, but in an aggregated test. Instead
of a single kernel Km, that the user would have to choose, we therefore consider a collection of such
kernels {Km, m ∈M}, and the aggregated test Φ̄bootFLR

α given by (3.2), based on the single tests φ̇m,α
defined in (3.13), and the above permutation approach. This aggregated test still satisfies (Plevel,α ).
The study of its second kind error related properties is the object of a current work.

3.4 Nearest Neighbors methods in the density model

This section is devoted to a current work with Christine Tuleau-Malot [16], on k-Nearest Neighbors
based tests for the two-sample problem in the density modelM(2)

density.
We first consider the multivariate two-sample problem where X = Rd, and ν is the Lebesgue measure
on X, focusing on the tests proposed by Schilling [Sch86] and Henze [Hen88]. Hence, we consider single
tests with a test statistic based on a k-Nearest Neighbors method, with a fixed k, and a critical value
constructed via a permutation approach. The crucial, but left open in these papers, question when
dealing with such k-Nearest Neighbors tests, is the one of the choice of k.
In the spirit of the above aggregated tests based on kernel methods, we propose new testing procedures
which overcome this question. Instead of considering a particular number k of nearest neighbors, we
consider a whole collection of possible values for k, and the corresponding collection of tests, which
allows then to construct an aggregated test. This testing procedure is furthermore adapted to handle
the two-sample problem for functional data.
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3.4.1 k-Nearest Neighbors tests

We keep the same notation as in sections 3.1 and 3.3. In particular, X̄ = {X1, . . . , XN } still stands for
the pooled set X1 ∪X2, with cardinality N = N1 +N2. Here X = Rd and ν is the Lebesgue measure.
Consider a fixed but arbitrary norm ‖.‖ on Rd. The random vector Xj is called the rth nearest neighbor
to Xi if ‖Xl −Xi‖ < ‖Xj −Xi‖ for exactly r − 1 values of l (1 ≤ l ≤ N). It is denoted by Nr(Xi),
and linked with the indicator variable Ii(r) defined by

Ii(r) =

 1 if Xi and Nr(Xi) are both elements of either X1 or X2,

0 otherwise.

Ties are neglected since they occur with probability zero. When ties however occur in practice, for
instance because of limited resolution in measurement scales or rounding, they can be ranked as
neighbors at random or in the same order as their indices (like in Section 2.3.1), without changing the
validity of the results.
The k-Nearest Neighbors (k-NN) test statistic introduced by Schilling [Sch86], and then further studied
by Henze [Hen88] is defined for k in {1, . . . , N } by

T̈k =
N∑
i=1

k∑
r=1

Ii(r),

and represents the total number of k-Nearest Neighbors type coincidences.
Notice that this test statistic can be related to the test statistic Ṫm, defined in (3.12) from a kernel
Km. Indeed, if for every i, k in {1, . . . , N }, ε0

i stands for a mark equal to 1 if Xi is an element of X1,
−1 if it is an element of X2, and Nk(Xi) for the set {Nr(Xi), 1 ≤ r ≤ k} of k-Nearest Neighbors to
Xi, T̈k can be written as

T̈k =
∑

i,j∈{1,...,N }, i6=j

ε0
i ε

0
j + 1

2
1Xj∈Nk(Xi). (3.15)

It is therefore very close in spirit to the test statistic Ṫm, replacing Km(Xi, Xj) by 1Xj∈Nk(Xi).
The k-NN test proposed in [Sch86] and [Hen88] consists in rejecting (H0 ) when T̈k is larger than a
critical value constructed by a permutation approach, which can be described as in Section 3.3. Thus,
let us introduce a random permutation ΠN uniformly distributed on the group SN of permutations of
the set {1, . . . , N }, and set

εi =

 1 if ΠN (i) ∈ {1, . . . , N1},

−1 if ΠN (i) ∈ {N1 + 1, . . . , N}.

We then define:
T̈ εk =

∑
i,j∈{1,...,N}, i6=j

εiεj + 1

2
1Xj∈Nk(Xi),

and for α in (0, 1), we introduce q̈(X̄)
k (1− α) the (1− α) quantile of the conditional distribution of T̈ εk

given X̄. The test proposed in [Sch86] and [Hen88] can be rewritten as

φ̈k,α = 1{T̈k>q̈X̄k (1−α)}.

Let us now assume that X = (X1,X2) is defined from independent sequences (X1
i )i≥1 and (X2

i )i≥1 of
i.i.d. random vectors from the distributions with densities f1 and f2 respectively, byX1 = {X1

1 , . . . , X
1
N1
},

and X2 = {X2
1 , . . . , X

2
N2
}.
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Henze proves that, if dN1,N2 = (N1(N1 − 1) +N2(N2 − 1)) / (N − 1), under (H0 ), the conditional
distribution of N−1/2

(
T̈ εk − kdN1,N2

)
given X̄ converges, almost surely in

(
(X1

i )i≥1, (X
2
i )i≥1

)
, towards

the same Gaussian limit distribution as N−1/2
(
T̈k − kdN1,N2

)
, as N → +∞, N1/N → τ ∈ (0, 1). Since

the common limit distribution is Gaussian, it has a continuous c.d.f., so using Lemma 21.2 in [VdV00]
combined with Slutsky’s lemma, one can prove that φ̈k,α is asymptotically of size α, that is

P(H0 )

(
φ̈k,α = 1

)
→N→+∞,N1/N→τ∈(0,1) α.

Henze also proves that it is consistent against any alternative, that is, under (H1 ),

Pf1,f2

(
φ̈k,α = 1

)
→N→+∞,N1/N→τ∈(0,1) 1.

As in Section 3.3, since the permutation approach described above for the k-NN test statistic T̈k sat-
isfies the conditional invariance property, from a nonasymptotic point of view, φ̈k,α satisfies (Plevel,α ).
Moreover, this property remains valid when the conditional quantile q̈(X̄)

k (1−α) is approximated with
a Monte Carlo method, thanks to Romano and Wolf’s lemma (see Lemma 4).

3.4.2 Aggregation of Nearest Neighbors tests

Let us here consider a collection K ⊂ {1, . . . , N} of reasonable values for k, and the aggregated test
Φ̄bootFLR
α defined in (3.2) from the collection of tests

{
φ̈k,α, k ∈ K

}
.

This test then satisfies (Plevel,α ), and from Henze’s consistency result, one can deduce that it is also
consistent against any alternative.

In [16], we propose a variant of this aggregated test, which allows to handle the two-sample problem
for functional data. It is based on the same ideas as in [BBW05] and [3] described in Chapter 2. In a
few words, when the observed random variables belong to a functional space, we consider a collection
K of reasonable numbers k of neighbors, a collection of positive integers D, and the corresponding
collection of k-NN tests based on the d first coefficients in the expansions of the Xi’s in a complete
system of the functional space, for k in K and d in D. This collection of single tests is then aggregated
following the same aggregation scheme as for Φ̄bootFLR

α .

3.5 Perspectives

Our short term perspectives on two-sample problems are numerous as many of the above presented
works are still in progress. The nonasymptotic study of second kind error properties of the proposed
tests in the density and regression models poses the difficulty of the precise control of the permutation
based quantiles. The key elements of this study are therefore concentration inequalities on permuta-
tions, which would play the role of the concentration inequalities for Rademacher chaos used in the
Poisson process model. A part of the PhD thesis of Mélisande Albert is devoted to such concentra-
tion inequalities, as they are also needed to study Mélisande Albert’s independence tests from the
nonasymptotic point of view. The issue is not completely solved yet, as her concentration inequalities
can only be used with a particular form of test statistics.

The introduction of general kernels in test statistics, like for instance reproducing kernels which were
initially dedicated to statistical learning tasks, offers numerous perspectives, which are well beyond
the scope of two-sample problems. On the one hand, it allows, by giving an original point of view on
distance-based tests (see [SSGF13] for instance), to think about many new test statistics for classical
two-sample problems. On the other hand, it also allows to handle two-sample problems in complex
models, where the data are not necessary assumed to be in finite dimensional spaces, for instance,
micro-arrays data and graphs models.



Chapter 4

Bootstrap and permutation tests of
independence

4.1 Introduction

This chapter is devoted to a piece of work with Mélisande Albert during her PhD thesis, Yann Bouret
and Patricia Reynaud-Bouret, which is motivated by a dependence detection issue in neuroscience, and
which has lead to two articles: [12] (with the supplement [13]) and [15] respectively dealing with the
theoretical and practical aspects of the issue.
It is rather atypical in the present dissertation, in the sense that the introduced tests are mainly studied
from an asymptotic point of view, except when permutation approaches are considered, and that they
are single tests, not resulting from the aggregation principle.
In fact, these single tests are included in a multiple test, which enables to select time windows where
a particular dependency structure can be detected. This topic is developed in Chapter 5.

The study of correlations between variables is a key point in data analysis, which places the question of
testing whether two real valued random variables or random vectors are independent among the main
topics of the statistical literature. From the historical, and much used in practice, Pearson’s chi-square
test of independence (see [Pea00, Pea11]) to the modern test of [GG10] using kernel methods in the
line of statistical learning, many nonparametric tests have been proposed. Of particular interest are the
tests based on permutation or bootstrap approaches. Two families of such permutation or bootstrap
independence tests may be distinguished at least: the whole family of rank tests including the tests
of Hotelling and Pabst [HP36], Kendall [Ken38], Wolfowitz [Wol42] or Hoeffding [Hoe48b] on the one
hand, the family of Kolmogorov-Smirnov type tests, like Blum, Kiefer, and Rosenblatt’s [BKR61],
Romano’s [Rom89] or Van der Vaart and Wellner’s [VdVW96] ones on the other hand. Given some
prescribed first kind error level α in (0, 1), these tests are all proved to be asymptotically of size α. The
tests based on permutation are known to be in addition exactly (nonasymptotically meaning) of level α,
that is to satisfy (2), for any sample size. Furthermore, some of these tests are proved to be consistent
against many alternatives, such as Hoeffding’s [Hoe48b] one and the family of Kolmogorov-Smirnov
type tests (except the permutation test described in [VdVW96]).
Detecting dependence is also a fundamental old issue in the neuroscientific literature (see e.g., [GP69]).
The neuroscience problem we are interested in consists in testing whether two spike trains simulta-
neously recorded on two different neurons, during n independent trials as described in [GDA10], are
independent. A spike train is a set of time occurrences of action potentials for one neuron, the spikes
being the time occurrences themselves, commonly accepted as some of the main components of the
brain activity (see [Sin93]).
In practice, the real recordings of spike trains are discretized in time, so they belong to finite dimensional
spaces. However, due to the record resolution, the dimension of these spaces is so huge (from ten
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thousand up to one million) that it is neither realistic nor reasonable to model such recordings of
spike trains by finite dimensional variables, and to apply usual independence tests. Several methods,
such as the classical Unitary Events method (see [GDA10] and references therein), use a dimension
reduction method (the binning data pre-processing), which unfortunately involve a significant loss
of information. Modeling the recordings of spike trains by point processes and using, constructing if
needed, independence tests specifically dedicated to such point processes thus appear as a more realistic
and reasonable solution.

More precisely, let us introduce a probability space (Ω,A,P) and the set X of possible values for finite
point processes observed on an interval X of R, that is the set of the countable subsets of X. The set
X is endowed with a metric dX (see (4.13) below), issued from the Skorokhod topology, that makes it
separable, thus defining accordingly borelian sets on X and by extension on X 2 through the product
metric. A pair X = (X1, X2) of finite point processes defined on (Ω,A,P) and observed on X, has
joint distribution P , with marginals P 1 and P 2 if P (B) = P(X ∈ B), P 1(B1) = P(X1 ∈ B1), and
P 2(B2) = P(X2 ∈ B2), for all Borelian set B of X 2, and Borelian sets B1, B2 of X .
With these definitions, we can now consider the following point processes model.

M(2)
point proc. X = Xn = (X1, . . . , Xn), where

(
Xi = (X1

i , X
2
i )
)
i≥1

is a sequence of i.i.d. pairs
of finite point processes defined on (Ω,A,P), observed on X = [0, 1], with joint
distribution P , with marginals P1 and P2.

Typically, in the neuroscience problem described above, X models pairs of rescaled spike trains issued
from two distinct neurons, simultaneously recorded during n trials. Those trials are conducted on living
animals that are repeatedly subject to the same stimulus or that are repeatedly executing the same
task, and separated by resting periods (more details about the experimental conditions can be found
in Chapter 5 and [15]). In these conditions, it is commonly admitted that the n trials are i.i.d. and
that the modelM(2)

point proc. is actually realistic.

From the observation of X, we aim at testing (H0 ) X1
1 and X2

1 are independent against (H1 ) X1
1 and

X2
1 are not independent, which can also be written as

(H0 ) P = P 1 ⊗ P 2 against (H1 ) P 6= P 1 ⊗ P 2.

In our neuroscience problem, this amounts to testing whether the two neurons from which the pairs of
spike trains are issued are independent or not.

Notice that asymptotic tests of independence had already been introduced in [TMRGRB14] in the
parametric model of homogeneous Poisson processes. Such a parametric framework is necessarily re-
strictive and even possibly inappropriate since the very existence of any precise underlying distribution
for the point processes modeling spike train data is subject to broad debate (see [PC09, RBRGTM14]).
To construct nonparametric tests of independence for point processes is therefore of utmost importance
in this neuroscience context.
Based on these considerations, particular bootstrap methods under the name of trial-shuffling have
been proposed in [PG03, PDG03] for binned data with relatively small dimension, but without proper
mathematical justification. Besides the loss of information the binning data pre-processing involves, it
appears that the test statistics chosen in these papers do not lead to tests of asymptotic prescribed
size as shown and explained in [15]. We propose in [12] new nonparametric tests of independence, in
the spirit of the Kolmogorov-Smirnov type tests of [Rom89] and [VdVW96], based on U -statistics and
whose critical values are obtained via bootstrap or permutation approaches.
But whereas the tests of [Rom89] and [VdVW96] are based on particular U -statistics for i.i.d. real
valued random variables or vectors, ours are based on general U -statistics for i.i.d. pairs of point
processes. To our knowledge, there is no other work on the bootstrap or permutation of such general
U -statistics for i.i.d. pairs of point processes.
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Though the proofs of our results are rather close to the ones in [LN09] for the bootstrap, and inspired
by Romano’s [Rom87, Rom89] work and Hoeffding’s [Hoe52] precursor results on the permutation, an
additional difficulty thus lies in the nature of the mathematical objects we handle here, that is point
processes and their associated point measures which are random measures.
Furthermore, whereas the convergence of the conditional distribution of the permuted test statistic
given the observed sample X, towards the limit distribution of the original test statistic under (H0 ),
when (H0 ) is actually satisfied, can be considered as a rather usual result, the asymptotic behavior
of the permuted test statistic under (H1 ) is rarely studied, even in more classical settings than point
processes. Our result in Theorem 9 solves this question in the present framework. It can thus be viewed
as the beginning of an answer to a problem stated as open question in [VdVW96, page 371].
Besides these asymptotic aspects, we focus on the nonasymptotic properties of the permutation ap-
proach, in particular when Monte Carlo methods are used to approximate the chosen critical values
or quantiles. It has been acknowledged that when both bootstrap and permutation approaches are
available, permutation should be preferred, since the corresponding tests are guaranteed to be of the
prescribed level. Details are given in Section 4.4. Nevertheless, we keep investigating both approaches
together, as bootstrap methods - through trial-shuffling - are the usual references in neuroscience.

4.2 General description of the tests

4.2.1 From neuroscience interpretations to general test statistics

The main dependence feature that neuroscientists expect to detect between two neurons corresponds
to synchronization in time, referred to as coincidences [GDA10]. More precisely, neuroscientists aim at
assessing if such coincidences occur significantly, that is more than what may be due to chance. They
speak in this case of a detected synchrony.
Different kinds of coincidence count functions have been introduced in the neuroscientific litera-
ture, such as the binned coincidence count function or its shifted version introduced in [Grü96] and
[GDG+99]. We here particularly focus on the notion of coincidence count between two point processes
X1 and X2 with delay δ (δ > 0) defined in [TMRGRB14] by

ϕcoincδ (X1, X2)=

∫
[0,1]2

1|u−v|≤δdNX1(u)dNX2(v) =
∑

u∈X1,v∈X2

1|u−v|≤δ, (4.1)

where dN is defined as in (1.20).
In the parametric homogeneous Poisson framework of [TMRGRB14], for every i in {1, . . . , n}, the
expectation of ϕcoincδ

(
X1
i , X

2
i

)
has a simple expression as a function of δ and the intensities λ1 and λ2

of X1
i and X2

i . Since λ1 and λ2 can be easily estimated, an estimator of this expectation can thus be
obtained using the plug-in principle, and subtracted from ϕcoincδ

(
X1
i , X

2
i

)
to lead to a test statistic,

based on

C(Xn) =

n∑
i=1

ϕcoincδ

(
X1
i , X

2
i

)
, (4.2)

with an asymptotic standard Gaussian distribution under (H0 ).
In the present nonparametric framework where as few assumptions as possible on P have to be made,
such a centering plug-in tool is not available. We use instead a self-centering trick, which amounts,
combined with a rescaling step, to considering the statistic

1

n(n− 1)

∑
i 6=i′∈{1,...,n}

(
ϕcoincδ

(
X1
i , X

2
i

)
− ϕcoincδ

(
X1
i , X

2
i′
))
. (4.3)

As we did not want to restrict our study to the particular synchrony detection problem, noticing that
(4.3) can be written as a U -statistic of the i.i.d. sample Xn = (X1, . . . , Xn) with a symmetric kernel, as
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defined by Hoeffding [Hoe48a], we in fact investigate more general independence test statistics. These
test statistics are based on U -statistics of the form

Un,h(Xn) =
1

n(n− 1)

∑
i 6=i′∈{1,...,n}

h (Xi, Xi′) , (4.4)

where h : (X 2)2 → R is a symmetric kernel such that:

(ACent )
For all n ≥ 2, Un,h(Xn) is zero mean under (H0 ), that is,

for X and X ′ i.i.d. with distribution P 1 ⊗ P 2, E [h (X,X ′) ] = 0.

The particular case where for x = (x1, x2), y = (y1, y2),

h(x, y) = hϕcoincδ
(x, y) :=

1

2

(
ϕcoincδ

(
x1, x2

)
+ ϕcoincδ

(
y1, y2

)
− ϕcoincδ

(
x1, y2

)
− ϕcoincδ

(
y1, x2

) )
, (4.5)

for which Un,h
ϕcoinc
δ

(Xn) is equal to the statistic (4.3) is called the Coincidence case.

The extended case where

h(x, y) = hϕ(x, y) :=
1

2

(
ϕ
(
x1, x2

)
+ ϕ

(
y1, y2

)
− ϕ

(
x1, y2

)
− ϕ

(
y1, x2

))
, (4.6)

for some given integrable function ϕ, is called the Linear case.
In these cases, note that (ACent ) is straightforwardly satisfied and that the statistic Un,hϕ(Xn) is an
unbiased estimator of ∫ ∫

ϕ
(
x1, x2

) (
dP (x1, x2)− dP 1(x1)dP 2(x2)

)
,

without any distribution assumption on the underlying point processes.
If the Xi’s were pairs of finite dimensional variables with continuous distributions w.r.t. the Lebesgue
measure, this statistic would be closely related to Kolmogorov-Smirnov type tests of independence.
For instance, the test statistics of Blum, Kiefer, and Rosenblatt [BKR61], Romano [Rom89], Van der
Vaart and Wellner [VdVW96] are equivalent to

√
n sup
v1∈V1,v2∈V2

∣∣∣Un,hϕ
(v1,v2)

(Xn)
∣∣∣ ,

where, respectively:
— V1 = V2 = R, ϕ(v1,v2)(x

1, x2) = 1]−∞,v1](x
1)1]−∞,v2](x

2);
— V1 and V2 are countable VC classes of subsets of Rd, ϕ(v1,v2)(x

1, x2) = 1v1(x1)1v2(x2);
— V1 and V2 are well-chosen classes of real-valued functions, ϕ(v1,v2)(x

1, x2) = v1(x1)v2(x2).

Besides (ACent ), we also assume that Un,h(Xn) is nondegenerate under (H0).

(Anondeg )
For all n ≥ 2, Un,h(Xn) is nondegenerate under (H0), that is,

for X and X ′ i.i.d. with distribution P 1 ⊗ P 2, Var [E [h(X,X ′)|X ] ] 6= 0.

Finally, we also need the following moment assumption, which guarantees that the variance of Un,h(Xn)
exists.

(AMmt ) For X and X ′ i.i.d. with distribution P , E
[
h2 (X,X ′ )

]
< +∞.

A detailed discussion about these assumptions, and their relevance in practice, is provided in [12].
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4.2.2 A first basic asymptotic test

The asymptotic setup and additional notation. As explained in the introduction above, the
point of view that we adopt here is mainly asymptotic, so we consider several kinds of convergence. In
particular, using bootstrap and permutation approaches entails taking into account random conditional
distributions, given the sample Xn. It is therefore worth clearly presenting the notation used in the
following to state our results as concisely as possible.

— For any functional Z : (X 2)n → R, L (Z,Q) denotes the distribution of Z(Yn), where Yn is
an i.i.d. sample from the distribution Q on X 2. In particular, the distribution of Z(Xn) under
(H0 ) is denoted by L

(
Z,P 1 ⊗ P 2

)
.

— If the distribution Q = Q(W ) depends on a random variable W , L (Z,Q|W ) is the conditional
distribution of Z(Yn), Yn being an i.i.d. sample from the distribution Q = Q(W ), given W .

— " Q-a.s. in (Xi)i" at the end of a statement means that the statement only depends on the
sequence (Xi)i, where the Xi’s are i.i.d. with distribution Q, and that there exists an event C
only depending on (Xi)i such that P (C ) = 1, on which the statement is true. Here, Q is usually
equal to P .

— "Qn =⇒
n→+∞

Q" means that the sequence of distributions (Qn)n converges towards Q in the weak

sense, that is for any real valued, continuous and bounded function g,
∫
g(z)dQn(z) →n→+∞∫

g(z)dQ(z).
Following the historical paper by Bickel and Freedman [BF81], the closeness between two distributions
on R is here measured via the L2-Wasserstein’s metric d2 (also called Mallows’ metric), equivalent to
both weak convergence and convergence of second-order moments.
As often, the real Gaussian distributions have a key role in the limit theorems that we obtain: N (ν, σ2)
stands for the real Gaussian distribution with mean ν and variance σ2, Fν,σ2 for its c.d.f. and F−1

ν,σ2 for
its quantile function.

The central limit theorem for U-statistics of i.i.d. pairs of independent point processes.
From the results of Rubin and Vitale [RV80] generalizing Hoeffding’s [Hoe48a] decomposition of non-
degenerate U -statistics to the case where the Xi’s are nonnecessarily real valued random vectors, a
central limit theorem for Un,h(Xn) under (H0 ) can be easily derived.
Assume that h satisfies (ACent ), (Anondeg ), and (AMmt ), and let

σ2
h,P 1⊗P 2 = 4Var

[
E
[
h
(
X,X ′

)
|X
]]

for X and X ′ i.i.d. with distribution P 1 ⊗ P 2. (4.7)

Then,
d2

(
L
(√
nUn,h, P

1 ⊗ P 2
)
,N (0, σ2

h,P 1⊗P 2)
)
−→

n→+∞
0. (4.8)

Considering the unbiased estimator of σ2
h,P 1⊗P 2 under (H0 ) defined by

Σ2(Xn) =
4

n(n− 1)(n− 2)

∑
i,j,k∈{1,...,n},#{i,j,k}=3

h(Xi, Xj)h(Xi, Xk),

this in particular leads to the following result:

L
(√

nUn,h/Σ, P
1 ⊗ P 2

)
=⇒

n→+∞
N (0, 1).

Given some prescribed first kind error level α in (0, 1), a simple asymptotic test can thus be defined
by

φn,h,α = 1{|√nUn,h(Xn)|>Σ(Xn)F−1
0,1 (1−α/2)}. (4.9)

This test is asymptotically of size α, that is, it satisfies
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(
P∞size,α

)
P (φn,h,α = 1)→n→+∞ α if P = P 1 ⊗ P 2.

It is also consistent against any reasonable alternative P , that is, considering the set
P1 =

{
P,
∫
h(x, x′)dP (x)dP (x′) 6= 0

}
, it satisfies(

P∞consist.,P1

)
P (φn,h,α = 1)→n→+∞ 1 if P ∈ P1.

Moreover, similar results hold for the corresponding upper and lower-tailed tests, at the difference that
consistency is only obtained on:

— P+
1 =

{
P,
∫
h(x, x′)dP (x)dP (x′) > 0

}
for the upper-tailed test,

— P−1 =
{
P,
∫
h(x, x′)dP (x)dP (x′) < 0

}
for the lower-tailed test.

However, such a purely asymptotic test may of course suffer from a lack of power when the sample
size n is small or even moderate, which is typically the case for the application in neuroscience we
are interested in for biological reasons (from few tens up to few hundreds at best). So following the
works of Romano [Rom89] or Van der Vaart and Wellner [VdVW96], we turn to classical bootstrap
and permutation approaches, which are known to generally outperform such a simple asymptotic test,
especially for small sample sizes.

More precisely, we introduce some tests of the same form as the above asymptotic tests:
φ+
n,h,α = 1{√nUn,h(Xn)>c+n,h,α(Xn)} (upper-tailed test),

φ−n,h,α = 1{√nUn,h(Xn)<c−n,h,α(Xn)} (lower-tailed test),

φ
+/−
n,h,α = φ+

n,h,α/2 ∨ φ
−
n,h,α/2 (two-tailed test),

(4.10)

but with random critical values c+
n,h,α(Xn), c−n,h,α(Xn) obtained from bootstrap or permutation ap-

proaches. Though these approaches are here mainly justified from an asymptotic point of view as
well (except for the exact level achievement when considering permutation), the simulation studies
presented in [12] and [15] indeed show their efficiency for small sample sizes.
A nonasymptotic theoretical study, by Mélisande Albert, of permutation tests of independence, but
for i.i.d. real valued random variables is in progress, and constitutes a large part of her PhD thesis.

Remark that if (Anondeg ) does not hold, σ2
h,P 1⊗P 2 = 0 and

√
nUn,h(Xn) tends in probability towards 0.

Indeed, degenerate U -statistics of order 2 have a faster rate of convergence than
√
n (see [AG93] for

instance for explicit limit theorems). Hence, in this case,
√
nUn,h(Xn) can not be used as a test statistic

anymore. As noticed above, the relevance of (Anondeg ) is discussed in [12].

4.3 Bootstrap tests of independence

As seen in (4.8), the limit distribution of the statistic
√
nUn,h(Xn) under (H0 ) is not free from the

unknown underlying marginals P 1 and P 2. The main purpose of the classical bootstrap approach is
to construct a conditional distribution, which only depends on the observed sample Xn, but which
approximates this unknown distribution, for large, but also moderate or small sample sizes. As each
Xi = (X1

i , X
2
i ) is P 1 ⊗ P 2-distributed under (H0), the first and second coordinates of the elements of

Xn are independently resampled according to the marginal empirical distributions P jn given by

for j = 1, 2, P jn =
1

n

n∑
i=1

δ
Xj
i
. (4.11)

More precisely, a bootstrap sample from Xn is denoted by X∗n =
(
X∗n,1, . . . , X

∗
n,n

)
, with X∗n,i =

(X∗1n,i, X
∗2
n,i), and is here defined as an n i.i.d. sample from the distribution P 1

n ⊗ P 2
n .
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Then, the bootstrap distribution of interest is the conditional distribution of
√
nUn,h(X∗n) given Xn,

that is L
(√

nUn,h, P
1
n ⊗ P 2

n |Xn

)
to be compared with the initial distribution of

√
nUn,h(Xn) under

(H0), that is L
(√

nUn,h, P
1 ⊗ P 2

)
.

In the following, as usual, E∗[·] stands for the conditional expectation given Xn.

4.3.1 Consistency of the bootstrap approach

Our results of consistency for the global bootstrap approach were obtained under several additional
assumptions, that are rather classical in the bootstrap scene. Nevertheless, as the random variables
we deal with are not real-valued variables but point processes, these assumptions may be difficult to
interpret in the present setup. Their relevance, in theory as well as in practice is therefore also discussed
in details in [12].

In addition to assumption (ACent ), we need its following empirical version:

(A∗Cent )
For x1 = (x1

1, x
2
1), . . . , xn = (x1

n, x
2
n) in X 2,∑

i1,i2,i′1,i
′
2∈{1,...,n}

h
((
x1
i1
, x2

i2

)
,
(
x1
i′1
, x2

i′2

))
= 0.

Notice that this assumption, as well as (ACent ), is fulfilled in the Linear case where h is of the form
hϕ given by (4.6).
Furthermore, a stronger moment assumption than (AMmt ) is required, namely

(A∗Mmt )
For X1, X2, X3, X4 i.i.d. with distribution P on X 2,

and for i1, i2, i′1, i′2 in {1, 2, 3, 4}, E
[
h2
((
X1
i1
, X2

i2

)
,
(
X1
i′1
, X2

i′2

))]
< +∞.

When (A∗Mmt ) is satisfied, this implies that
— (AMmt ) is satisfied (taking i1 = i2, i′1 = i′2, and i′1 6= i1),
— for X ∼ P , E

[
h2(X,X)

]
< +∞ (taking i1 = i2 = i′1 = i′2),

— forX1,X2 i.i.d with distribution P 1⊗P 2, E
[
h2
(
X1, X2

)]
< +∞ (taking i1, i2, i′1, i′2 all different).

Finally, a continuity assumption is required on the kernel h: let us describe the topology we use here.
The set X can be embedded in the space D of càdlàg functions on [0, 1] through the identification
N : x ∈ X 7→ Nx ∈ D, where Nx is the counting process associated with x as defined in (1.19). Now
consider the uniform Skorokhod topology on D (see [Bil09]), associated with the metric dD defined by

dD(f, g) = inf

{
ε > 0, ∃λ ∈ Λ, sup

t∈[0,1]
|λ(t)− t| ≤ ε, sup

t∈[0,1]
|f(λ(t))− g(t)| ≤ ε

}
, (4.12)

where Λ is the set of strictly increasing, continuous mappings of [0, 1] onto itself. Thanks to the
identification N above, X can then be endowed with the topology induced by dX defined on X by

dX (x, x′) = dD(N(x), N(x′)) for every x, x′ in X . (4.13)

As an illustration, if x and x′ are in X , for ε in (0, 1), dX (x, x′) ≤ ε implies that x and x′ have the same
cardinality, and for k in {1, . . . ,#x}, the kth point of x is at distance less than ε from the kth point
of x′. Since (D, dD) is a separable metric space, so are (X , dX ),

(
X 2, dX 2

)
, where dX 2 is the product

metric defined from dX (see [Dud02, p. 32]), and
(
X 2 ×X 2, d

)
, where d, the product metric defined

from dX 2 , is given by

d
(
(x, y), (x′, y′)

)
= sup

{
sup
j=1,2

{
dX (xj , x

′j)
}
, sup
j=1,2

{
dX (yj , y

′j)
}}

, (4.14)

for every x = (x1, x2), y = (y1, y2), x′ = (x
′1, x

′2), y′ = (y
′1, y

′2) in X 2.

The kernel h chosen to define the U -statistic Un,h(Xn) in (4.4) is here assumed to satisfy:
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(ACont )
There exists a subset C of X 2 ×X 2, such that (P 1 ⊗ P 2)⊗2(C) = 1 and

h is continuous on C for the topology induced by d.
Notice that in the Linear case with

ϕ(X1, X2) = ϕw(X1, X2) :=

∫
[0,1]2

w(u, v)dNX1(u)dNX2(v), (4.15)

for some continuous integrable function w, the kernel hϕ defined by (4.6) is proved to satisfy (ACont ).
As for the Coincidence case, we also prove that the coincidence count kernel hϕcoincδ

defined on X 2×X 2

by (4.1) and (4.6) satisfies (ACont ) for a reasonable choice of δ.

Let us now state the main results we obtained in [12].

Theorem 9 (Albert, Bouret, Fromont, Reynaud-Bouret, 2015). Under (ACent ), (A∗Cent ), (A∗Mmt )
and (ACont ),

d2

(
L
(√

nUn,h, P
1
n ⊗ P 2

n

∣∣Xn

)
,L
(√
nUn,h, P

1⊗P 2
))
−→

n→+∞
0, P -a.s. in (Xi)i.

Notice first that the above convergence result holds under (H0 ) as well as under (H1 ).
Then, its proof does not use (4.8), so here the bootstrap distribution L

(√
nUn,h, P

1
n ⊗ P 2

n

∣∣Xn

)
is

directly compared to L
(√
nUn,h, P

1 ⊗ P 2
)
, without arguing that they both converge to the same

Gaussian limit distribution, as often done in papers dealing with the bootstrap. In particular, the
assumption (Anondeg ) is not needed therefore, when the U -statistic Un,h(Xn) is degenerate, both
considered distributions converge to the Dirac mass in 0.
However, (4.8) plays a crucial role to obtain the following corresponding convergence of the boot-
strapped c.d.f. and quantiles.

Corollary 3 (Albert, Bouret, Fromont, Reynaud-Bouret, 2015). Let X⊥⊥n be an n i.i.d. sample from
the distribution P 1 ⊗ P 2 on X 2. Under (Anondeg ) and the assumptions of Theorem 9,

sup
z∈R

∣∣∣P (√nUn,h (X∗n) ≤ z
∣∣Xn

)
− P

(√
nUn,h(X⊥⊥n ) ≤ z

)∣∣∣ −→
n→+∞

0, P -a.s. in (Xi)i.

If moreover, q∗(Xn)
n,h denotes the conditional quantile function of

√
nUn,h(X∗n) given Xn and q⊥⊥n,h denotes

the quantile function of
√
nUn,h(X⊥⊥n ), for every u in (0, 1),

|q∗(Xn)
n,h (u)− q⊥⊥n,h(u)| −→

n→+∞
0, P -a.s. in (Xi)i.

4.3.2 Asymptotic properties of the bootstrap tests

The result of Corollary 3 is the fundamental point to construct our bootstrap tests. Let φ∗,+n,h,α, φ
∗,−
n,h,α

and φ∗,+/−n,h,α respectively be the three tests defined by (4.10) with c+
n,h,α(Xn) = q

∗(Xn)
n,h (1− α),

c−n,h,α(Xn) = q
∗(Xn)
n,h (α).

(4.16)

Note that the quantiles q∗(Xn)
n,h (u) are random, depending on Xn, and that they may be exactly com-

puted by considering the n2n possible bootstrap samples. The algorithmic complexity of such an exact
computation is usually so large that a Monte Carlo approximation, based on resampling from the
original Xn, is preferred in practice. This Monte Carlo step is also considered here. So let (Bn)n≥2

be a sequence of possible numbers of Monte Carlo iterations, such that Bn →n→+∞ +∞, and for
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n ≥ 1, let
(
X∗1n , . . . ,X

∗Bn
n

)
be Bn independent bootstrap samples from Xn. Set (U∗1, . . . , U∗Bn) =

(Un,h(X∗1n ), . . . , Un,h(X∗Bnn )). Introduce the corresponding order statistic (U∗(1), . . . , U∗(Bn)), and let
φ∗MC,+
n,h,α , φ∗MC,−

n,h,α and φ∗MC,+/−
n,h,α respectively be the tests defined by (4.10) with c+

n,h,α(Xn) =
√
nU∗(d(1−α)Bne),

c−n,h,α(Xn) =
√
nU∗(bαBnc+1).

(4.17)

Theorem 10 (Albert, Bouret, Fromont, Reynaud-Bouret, 2015). If (Anondeg ), (ACent ), (A∗Cent),
(A∗Mmt ) and (ACont ) hold, then the tests φ∗,+n,h,α, φ

∗,−
n,h,α and φ∗,+/−n,h,α satisfy

(
P∞size,α

)
and respectively(

P∞
consist.,P+

1

)
,
(
P∞

consist.,P−1

)
,
(
P∞consist.,P1

)
. The same results hold for φ∗MC,+

n,h,α , φ∗MC,−
n,h,α and φ∗MC,+/−

n,h,α .

Notice that when ϕ is equal to ϕw defined by (4.15) with a continuous integrable function w, Theorem 10
means that the corresponding two-tailed tests are consistent against any alternative such that βw =∫
w(u, v) (E [dNX1(u)dNX2(v) ]− E [dNX1(u) ]E [dNX2(v) ]) 6= 0. In [STM15], for a particular function

w, a nonasymptotic oracle-type result states that under specific Poisson assumptions, if βw is larger
than an explicit lower bound, then the second kind error rate of the proposed upper-tailed test of
interaction is less than a prescribed level β in (0, 1). In some sense, Theorem 10 thus generalizes the
result of [STM15] to a setup with much less reductive assumptions on the underlying stochastic models,
but in an asymptotic way, and without any evaluation of the separation rate.

4.3.3 Sketch of proof

We give below a short sketch of proof of Theorem 9, which follows similar arguments to the ones of
[BF81] for the bootstrap of the mean, or to [DM94] and [LN09] for the bootstrap of U -statistics. The
main novel point here consists in using the topologies induced by the metrics dD, dX and d defined by
(4.12), (4.13), (4.14) and the properties of the separable Skorokhod metric space (X , dX ), where weak
convergence of sample probability distributions is available (see [Var58]).

Recall that (Ω,A,P) is the probability space on which all the Xi’s are defined, so Ω represents the
randomness in the original sequence (Xi)i and a given ω in Ω represents a given realization of (Xi)i.

[First step] The first step of the proof consists in constructing, for almost all ω in Ω, a sequence
of random variables (Ȳ ∗n,ω,a)n≥1 such that for every n ≥ 1, Ȳ ∗n,ω,a ∼ P 1

n,ω ⊗ P 2
n,ω, where P jn,ω =

n−1
∑n

i=1 δXj
i (ω)

is the jth marginal empirical measure corresponding to the realization Xn(ω), a
random variable Ȳω,a ∼ P 1 ⊗ P 2, and {(Ȳ ∗n,ω,b)n≥1, Ȳω,b} an independent copy of {(Ȳ ∗n,ω,a)n≥1, Ȳω,a},
both defined on some probability space (Ω′ω,A′ω,P′ω ) depending on ω such that

E′ω
[(
h
(
Ȳ ∗n,ω,a, Ȳ

∗
n,ω,b

)
− h

(
Ȳω,a, Ȳω,b

) )2
]
−→

n→+∞
0, (4.18)

where E′ω denotes the expectation corresponding to P′ω.

From the strong law of large numbers for U -statistics due to Hoeffding [Hoe61], we deduce that there
exists Ω1 ⊂ Ω such that P(Ω1) = 1 and for every ω in Ω1,

1

n4

n∑
i,j,k,l=1

h2
((
X1
i (ω), X2

j (ω)
)
,
(
X1
k(ω), X2

l (ω)
))
−→

n→+∞
E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
. (4.19)

Since (X , dX ) defined by (4.13) is separable, Theorem 3 in [Var58] can be applied, so there exists
Ω2 ⊂ Ω such that P(Ω2) = 1 and for every ω in Ω2,

P 1
n,ω ⊗ P 2

n,ω =⇒
n→+∞

P 1 ⊗ P 2.
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Fix ω in Ω0 = Ω1 ∩ Ω2. Following the proof of Skorokhod’s representation theorem in [Dud02, Theo-
rem 11.7.2, p. 415], since (X 2, dX 2) is also a separable space, it is possible to construct

— some probability space (Ω′ω,A′ω,P′ω ),
— some random variables Ȳ ∗n,ω,a : Ω′ω → X 2, Ȳ ∗n,ω,b : Ω′ω → X 2 with distribution P 1

n,ω ⊗ P 2
n,ω,

— Ȳω,a : Ω′ω → X 2, Ȳω,b : Ω′ω → X 2 with distribution P 1 ⊗ P 2,
such that {(Ȳ ∗n,ω,a)n≥1, Ȳω,a} and {(Ȳ ∗n,ω,b)n≥1, Ȳω,b} are independent, and w.r.t. the metric d, under
(ACont ),

P′ω-a.s., h
(
Ȳ ∗n,ω,a, Ȳ

∗
n,ω,b

)
→n→+∞ h

(
Ȳω,a, Ȳω,b

)
.

As P′ω-a.s. convergence implies convergence in probability, to obtain (4.18), we only need to prove
that the sequence (h2(Ȳ ∗n,ω,a, Ȳ

∗
n,ω,b))n≥1 is uniformly integrable. This is done just noting that (4.19) is

equivalent to

E′ω
[
h2
(
Ȳ ∗n,ω,a, Ȳ

∗
n,ω,b

)]
=

1

n4

n∑
i,j,k,l=1

h2
(

(X1
i (ω), X2

j (ω)), (X1
k(ω), X2

l (ω))
)

−→
n→+∞

E
[
h2
((
X1

1 , X
2
2

)
,
(
X1

3 , X
2
4

))]
= E′ω

[
h2
(
Ȳω,a, Ȳω,b

)]
.

(4.18) is thus obtained for any ω in Ω0, with P(Ω0) = 1.

[Second step] We prove that for all n ≥ 2,

d2

(
L
(√

nUn,h, P
1
n ⊗ P 2

n

∣∣Xn

)
,L
(√

nUn,h, P
1 ⊗ P 2

) )
≤ κ inf

(Y ∗n,a,Ya ),(Y ∗n,b,Yb ) i.i.d.,

Y ∗n,a,Y
∗
n,b∼P

1
n⊗P 2

n , Ya,Yb∼P 1⊗P 2

E∗
[(
h
(
Y ∗n,a, Y

∗
n,b

)
− h (Ya, Yb )

)2
]
.

Since

inf
(Y ∗n,a,Ya ),(Y ∗n,b,Yb ) i.i.d.,

Y ∗n,a,Y
∗
n,b∼P

1
n,ω⊗P 2

n,ω , Ya,Yb∼P 1⊗P 2

E∗
[(
h
(
Y ∗n,a, Y

∗
n,b

)
− h (Ya, Yb )

)2
]

(ω)

≤ E′ω
[(
h
(
Ȳ ∗n,ω,a, Ȳ

∗
n,ω,b

)
− h

(
Ȳω,a, Ȳω,b

) )2
]
,

(4.18) allows to conclude.

4.4 Permutation tests of independence

The permutation approach we consider consists in randomly permuting the second coordinates of the
observed pairs of point processes. More precisely, given a random permutation Πn, uniformly distributed
on the set Sn of permutations of the set {1, . . . , n}, and independent of Xn, a permuted sample from
Xn is defined by XΠn

n = (XΠn
1 , . . . , XΠn

n ) with XΠn
i = (X1

i , X
2
Πn(i)).

Let P ?n be the conditional distribution of XΠn
n given Xn. Like for the bootstrap, the idea of the present

permutation principle is to mimic the distribution of the test statistic under (H0 ), so that permutation
tests, defined through permutation-based critical values, can be introduced. More precisely, if for all
kernel h, all n ≥ 2, q?(Xn )

n,h denotes the quantile function of L (
√
nUn,h, P

?
n |Xn ), we introduce the tests

φ?,+n,h,α, φ
?,−
n,h,α and φ?,+/−n,h,α defined by (4.10) with c+

n,h,α(Xn) = q
?(Xn)
n,h (1− α),

c−n,h,α(Xn) = q
?(Xn)
n,h (α).

(4.20)
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Like for the bootstrap approach, even if an exact computation of the quantiles q?(Xn)
n,h (u) is possible by

sorting the n! values of {Un,h (Xπn
n )}πn∈Sn , for algorithmic reasons, a Monte Carlo approximation is

used in practice. So, let (Bn)n≥2 be a sequence of possible numbers of Monte Carlo iterations, such that
Bn →n→+∞ +∞. For n ≥ 1, let

(
Π1
n, . . . ,Π

Bn
n

)
be a sample of Bn i.i.d. random permutations uniformly

distributed on Sn. The order statistic associated with
(
Un,h

(
X

Π1
n

n

)
, . . . , Un,h

(
XΠBnn
n

)
, Un,h (Xn )

)
is

denoted by
(
U?(1), . . . , U?(Bn+1)

)
. Our Monte Carlo permutation tests φ?MC,+

n,h,α , φ?MC,−
n,h,α and φ?MC,+/−

n,h,α

are then defined by (4.10), with c+
n,h,α(Xn) =

√
nU?( d(1−α)(Bn+1)e ),

c−n,h,α(Xn) =
√
nU?( bα(Bn+1)c+1 ).

(4.21)

4.4.1 Asymptotic properties in the Linear case

We prove in [12] that the conditional distribution L (
√
nUn,h, P

?
n |Xn ) is asymptotically close to the

distribution L
(√

nUn,h, P
1 ⊗ P 2

)
. Following the statements of our bootstrap results in Section 4.3,

we still express (see (4.23)) the closeness in distributions between the permuted and original statistics
in terms of Wasserstein’s metric, and this even under (H1 ). This result is therefore one of the newest
results of our work, whose scope is thus beyond the only generalization to the point processes setting. In
particular, as it allows to understand the behavior, under (H0 ) as well as under (H1 ), of the permuted
test statistic, it can be viewed as a step toward a solution for the open question of [VdVW96, p. 371],
as explained in the introduction. However, the result is only obtained in the Linear case, where h is
of the form hϕ for some integrable function ϕ, as defined in (4.6), under (Anondeg) and the following
moment assumption.

(Aϕ,Mmt ) For X =
(
X1, X2

)
with distribution P or P 1 ⊗ P 2, E

[
ϕ4
(
X1, X2

)]
<∞.

Recall that in the Linear case, (ACent ) is always satisfied.

Theorem 11 (Albert, Bouret, Fromont, Reynaud-Bouret, 2015). In the Linear case, under (Anondeg)
and (Aϕ,Mmt),

d2

(
L
(√

nUn,hϕ , P
?
n

∣∣Xn

)
,N
(

0, σ2
hϕ,P 1⊗P 2

))
P−→

n→+∞
0, (4.22)

where P−→ stands for the usual convergence in P-probability.

We then deduce from (4.8) that, in the conditions of Theorem 11,

d2

(
L
(√

nUn,hϕ , P
?
n

∣∣Xn

)
,L
(√

nUn,hϕ , P
1 ⊗ P 2

)) P−→
n→+∞

0, (4.23)

and for every u in (0, 1),

q
?(Xn )
n,hϕ

(u)
P−→

n→+∞
F−1

0,σ2
hϕ,P1⊗P2

(u).

These results nearly have the same role as Theorem 9 and Corollary 3, as one can see in Theorem 12.
However, note that unlike the bootstrap approach, the conditional distribution of the permuted test
statistic is not here directly compared to the initial distribution of the test statistic under (H0 ), but
to its Gaussian limit distribution. As a consequence, the consistency result can only hold under the
nondegeneracy assumption (Anondeg ). Moreover, the convergence occurs here in probability and not
almost surely, but note that no continuity assumption for the kernel hϕ is used anymore.
Finally, let us remark that the moment assumption, which is here stronger than the one used for the
bootstrap could perhaps be replaced by slighter Lindeberg conditions as in the combinatorial central
limit theorems for permutation (see [Háj61, Mot56, HC78]).
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Theorem 12 (Albert, Bouret, Fromont, Reynaud-Bouret, 2015). In the Linear case, under (Anondeg)
and (Aϕ,Mmt), the tests φ?,+n,hϕ,α, φ

?,−
n,hϕ,α

and φ
?,+/−
n,hϕ,α

satisfy
(
P∞size,α

)
and respectively

(
P∞

consist.,P+
1

)
,(

P∞
consist.,P−1

)
,
(
P∞consist.,P1

)
. The same results hold for the tests φ?MC,+

n,hϕ,α
, φ?MC,−

n,hϕ,α
and φ?MC,+/−

n,hϕ,α
.

At this stage, since the permutation independence tests satisfy the same asymptotic properties as the
bootstrap ones, but with much more computation difficulties to prove them, one might wonder whether
the introduction of the permutation tests is of genuine interest.
The main known advantage of the permutation approach lies in its nonasymptotic properties, which
are satisfied, whatever the symmetric kernel h, so not only in the Linear case.

4.4.2 General nonasymptotic properties

As far as we know, the nonasymptotic properties of the original permutation tests are known from
the fundamental paper by Hoeffding [Hoe52]. They are based on an invariance property, which can be
expressed in the present context as follows.

For every (deterministic) element πn of the group of permutations Sn, if P = P 1 ⊗ P 2, that is under
(H0 ), then Xπn

n has the same distribution as the original sample Xn.

This property justifies that the permutation tests φ?,+n,h,α, φ
?,−
n,h,α and φ?,+/−n,h,α are of level α.

Indeed, focusing for instance on the upper-tailed test φ?,+n,h,α, if P = P 1 ⊗ P 2, following Hoeffding’s
arguments, from the invariance property, one has

P
(
φ+
n,h,α = 1

)
= P

(√
nUn,h (Xn ) > q

?(Xn )
n,h (1− α)

)
=

1

n!

∑
πn∈Sn

P
(√

nUn,h (Xπn
n ) > q

?(Xπn
n )

n,h (1− α)
)

=
1

n!

∑
πn∈Sn

P
(√

nUn,h
(
XΠn
n

)
> q

?(XΠn
n )

n,h (1− α)

∣∣∣∣Πn = πn

)
= P

(√
nUn,h

(
XΠn
n

)
> q

?(XΠn
n )

n,h (1− α)

)
= E

[
P
(√

nUn,h
(
XΠn
n

)
> q

?(XΠn
n )

n,h (1− α)

∣∣∣∣Xn

)]
= E

[
1

n!

∑
πn∈Sn

1√
nUn,h(Xπn

n )>q
?(X

πn
n )

n,h ( 1−α )

]
.

But for all x in (X 2)n, q?(x
πn )

n,h (1−α) is the d(1−α)n!eth ordered value of {
√
nUn,h (xπn ) , πn ∈ Sn },

therefore, ∑
πn∈Sn

1√
nUn,h(xπn )>q

?(xπn )
n,h (1−α)

≤ n!α,

which allows to conclude that the test φ+
n,h,α is of level α.

This historical proof, which can be found in [Hoe52], can of course be reproduced for many testing
problems, and other groups of transformations than Sn. For instance, it can be used in the testing
problems of [DR06, ABR10] where the random transformations are defined from Rademacher variables.

Now, from a more recent result of Romano and Wolf, namely [RW05, Lemma 1] recalled in Lemma 4,
one can furthermore prove that for every n ≥ 2, the tests φ?MC,+

n,h,α , φ?MC,−
n,h,α and φ?MC,+/−

n,h,α are also of
level α, and we can state the following result.
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Proposition 6 (Albert, Bouret, Fromont, Reynaud-Bouret, 2015). For every fixed sample size n, any
test φn,h,α equal to φ?,+n,h,α, φ

?,−
n,h,α, φ

?,+/−
n,h,α , φ?MC,+

n,h,α , φ?MC,−
n,h,α , or φ?MC,+/−

n,h,α satisfies

(Plevel,α ) P (φn,h,α = 1) ≤ α if P = P 1 ⊗ P 2.

Note that these nonasymptotic results have no counterpart for the bootstrap approaches in general,
except when a particular exact wild bootstrap approach, based on Rademacher variables, is used (see
[DR06], [ABR10], [10] and Chapter 3). In a regression framework, [ABR10] further gives a nonasymp-
totic control of the first kind error rate for other kinds of bootstrap tests, based on concentration
inequalities in the spirit of [6], but such concentration inequalities are not accessible in any model and
for any test statistic.

4.4.3 Sketch of proof

We give below a sketch of proof of Theorem 11.

Let dBL denote the bounded Lipschitz metric for the weak convergence (see [Dud02]). For any variable
Zn depending on Xn and Πn, L (Zn|Xn ) denotes the conditional distribution of Zn given Xn.
[First step] The first step of the proof consists in decomposing
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)
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)
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X = (X1, X2) being P -distributed and independent of (Xi)i.
From Markov’s inequality, we prove that

E
[∣∣RΠn

n (Xn )
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which leads to
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[Second step] The second, and most difficult, step of the proof consists in proving that
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(
L
(
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∣∣Xn

)
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First note that MΠn
n (Xn ) =

∑n
i=1 Yn,i, with Yn,i = n−1/2

∑i−1
j=1

(
1Πn(i)=jCi,j + 1Πn(j)=iCj,i

)
.

Now, let Π′n be a random permutation uniformly distributed on Sn, independent of Πn and Xn, and
define Y ′n,i and M

Π′n
n (Xn ) by replacing Πn by Π′n in the definitions of Yn,i and MΠn

n (Xn ). Fix a, b
in R. Setting Fn,i = σ (Πn,Π

′
n, X1, X2, . . . , Xi ) for 2 ≤ i ≤ n, we prove by technical computations

that (aYn,i + bY ′n,i,Fn,i)2≤i≤n is a martingale difference array. From a central limit theorem for such
martingale difference arrays, we obtain that
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which, according to the Cramér-Wold device, gives that for every t in R,
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Using Chebychev’s inequality, with the fact (see [Dud02, Theorem 9.2.1] for instance) that in a sepa-
rable metric space, convergence in probability is metrizable, and therefore is equivalent to almost sure
convergence of a subsequence of any initial subsequence, we prove that this leads to (4.24). Hence

dBL
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L
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nUn,hϕ
(
XΠn
n
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)
,N
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0, σ2
hϕ,P 1⊗P 2

))
P−→

n→+∞
0.

[Third step] We finally derive via direct computations and the strong law of large numbers for U -
statistics of Hoeffding [Hoe61], the convergence of the conditional second order moments:

E
[(√

nUn,hϕ
(
XΠn
n

))2∣∣∣Xn

]
a.s.−→

n→+∞
σ2
hϕ,P 1⊗P 2 ,

which ends the proof.

4.5 Experimental results

The above bootstrap and permutation tests have been applied on simulated data as well as real
data from neuroscience experiments. We only tackle in this short section the simulation study, as
the real application is developed in the first part of Chapter 5 devoted to multiple tests. Indeed, in this
application, the tests are used on several time windows, that cover the whole observation time interval,
simultaneously, and therefore integrated in a multiple testing procedure.

On the one hand, samples from several distributions P = P 1 ⊗ P 2 have been simulated in order to
estimate the size, that is, the first kind error rate, of the tests. On the other hand, alternatives were
chosen, so that they are either pairs of Poisson processes, or more realistic point processes in the
neuroscience context (for instance Hawkes processes) with particular dependence structures, in order
to estimate the power of the tests.
All the obtained results confirm that the permutation test should be preferred, as, in all the experi-
ments, it shows an exact control of the size, and, compared to other tests that also guarantee such a
control (which is not the case for the bootstrap test), it is also the most powerful one.
The test based on the trial-shuffling approach from [GDA10], which is the reference distribution-free
method for neuroscientists, is clearly too conservative. We explain and illustrate in details in [15] that
this conservative behavior is due to a centering defect: the bootstrap approach is applied on a statistic
close to C(Xn) (see (4.2)), which is not properly centered. The present bootstrap tests were initially
devoted to correcting this defect.
When we introduced the permutation tests however, we also observed that a test based on the permu-
tation approach with the statistic C(Xn) does not suffer from the same defect. In fact, as our centering
correction term is invariant under permutation, this test is equivalent to ours.

4.6 Perspectives

An immediate perspective would be to study an aggregated test based on the above single independence
tests, typically defined from a collection of tests based on hϕcoincδ

, for several values of δ. However, in the
present context, this issue has only theoretical interest. Neuroscientists are in fact especially interested
in the value of δ which leads to a rejection of the independence hypothesis, as it provides the delay of
interaction between neurons.
The nonasymptotic study of the permutation based independence tests constitutes a large part of the
PhD thesis of Mélisande Albert, where appropriate concentration tools on permutation are developed.
This work is still in progress and in particular, new concentration results are expected to handle very
general forms of independence test statistics, for instance based on kernels in the spirit of [GG10].
Another path would be to develop a new exact bootstrap approach, different from the permutation one,
whose nonasymptotic theoretical study would be facilitated, at least for some forms of U -statistics.



Chapter 5

Multiple tests

5.1 Introduction

Let X be an observed random variable, defined on a probability space (Ω,A,P). Given a possible set
P of distributions P for X, we recall that a hypothesis is defined through a subset of P. In a classical
single testing problem, two hypotheses are considered: the null hypothesis (H0 ), which is viewed as
the favorite one, and expressed from a subset P0 as

(H0 ) P ∈ P0,

and an alternative (H1 ), expressed from a subset P1 ⊂ P \ P0 as

(H1 ) P ∈ P1.

In a multiple testing problem, a whole collection of null hypotheses is considered. For sake of simplicity,
following the terminology of Goeman and Solari [GS10], these hypotheses are confused with their
associated subset of P. An hypothesis H is therefore defined as a subset of P. It is said to be true
under P if P belongs to H, and false under P otherwise.
Given a finite collection H of such hypotheses, the aim is simultaneously testing H against P \H, for
every H in H, that is, simultaneously testing "H is true under P" against "H is false under P", or
equivalently "P ∈ H" against "P /∈ H", for every H in H.
We introduce the set of true hypotheses under P , given by

T (P ) = {H ∈ H, P ∈ H},

and the set of false hypotheses under P , given by

F(P ) = H \ T (P ) = {H ∈ H, P 6∈ H}.

A multiple testing procedure or a multiple test is a statistic given by a collection of rejected hypotheses
R ⊂ H, only depending on the observed random variable X, whose goal is to infer the set F(P ).
It is usually constructed from single tests of "P ∈ H" against "P /∈ H", for all H in H, that are mostly
defined through p-values pH , for H in H. For instance, given a collection of p-values {pH , H ∈ H}
such that for all P in H,

∀u ∈ (0, 1), P (pH ≤ u) ≤ u,
given a prescribed error rate level α in (0, 1), the historical Bonferroni multiple test (see e.g., [Sim86])
is defined by {H ∈ H, pH ≤ α/#H} .
As seen in Lemma 1, to go back and forth the expression of the considered single tests via test statistics
and critical values and their expression via p-values, it is however more convenient to consider the
following version of the Bonferroni multiple test:

RBonf = {H ∈ H, pH < α/#H} , (5.1)
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which is generalized to the weighted Bonferroni multiple test:

RwBonf = {H ∈ H, pH < wHα} , (5.2)

{wH , H ∈ H} being a collection of positive weights such that
∑

H∈HwH ≤ 1.

The Bonferroni multiple tests have been specifically constructed so that they have a Family-Wise Error
Rate, and so a weak Family-Wise Error Rate, defined as follows, both controlled by the prescribed level
α.

Definition 7 ((Weak) Family-Wise Error Rate). The weak Family-Wise Error Rate of a multiple test
R is defined by:

wFWER (R) = sup
P, T (P )=H

P (R∩ T (P ) 6= ∅) ,

and the (strong) Family-Wise Error Rate of R by:

FWER (R) = sup
P∈P

P (R∩ T (P ) 6= ∅) .

But controlling the above FWER may be too stringent and not needed in some applications. Many
other first kind error-related criteria for multiple tests have thus been introduced in the statistical
literature, generalizing or relaxing the FWER, defined above as the maximal probability of one or
more false discoveries (true null hypotheses that are rejected). Among them, the Per-Family Error Rate
(PFER) suggested by Spjøtvoll [Spj72] corresponds to the average number of false discoveries, while the
k−FWER introduced by Hommel and Hoffman [HH88] and further studied by Korn et al. [KTMS04],
Lehmann and Romano [LR05], Romano and Shaikh [RS06] or Romano and Wolf [RW07, RW10], is
the probability of k or more false discoveries. Like Genovese and Wasserman [GW04], several of these
authors also focused on the False Discovery Proportion (FDP), whose expected value is the very popular
False Discovery Rate (FDR) introduced by Benjamini and Hochberg [BH95].

Definition 8 (False Discovery Rate). The False Discovery Rate of a multiple test R is defined by:

FDRP (R) = EP
[

# (T (P ) ∩R)

1 ∨#R

]
=

 EP
[

#(T (P )∩R )
#R

]
if R 6= ∅,

0 otherwise.

Notice that for every multiple test R, supP, T (P )=H FDRP (R) = wFWER (R).
So, if supP, T (P )=H FDRP (R) ≤ α then R has a wFWER controlled by α. Furthermore, a multiple
test such that FWER (R) ≤ α satisfies supP∈P FDRP (R) ≤ α.
Benjamini and Hochberg introduce in [BH95] their famous multiple test defined as follows. Considering
the ordered p-values p(1) ≤ . . . ≤ p(#H) of {pH , H ∈ H}, and denoting the corresponding hypotheses
by H(1), . . . ,H(#H), Benjamini and Hochberg’s procedure is given by

RBH =
{
H(1), . . . ,H(k)

}
with k = max

{
i, p(i) ≤ iα/#H

}
.

If the single test statistics or the p-values {pH , H ∈ H} are independent, then

sup
P∈P

FDRP (RBH ) ≤ α.

Benjamin and Yekutieli [BY01] proved that the procedure still controls the FDRP for every P in P
such that the single test statistics or the p-values (corresponding to the true hypotheses) satisfy a
positive dependency property, namely the PRDS property. They propose in other cases of dependency
a modified procedure with α/

(∑#H
i=1 1/i

)
instead of α so that the FDRP is always controlled by α.

The present chapter is devoted to two very different topics in the multiple testing scene: an applied
one about a neuroscience issue, and a theoretical one about the definition of new second kind error
related criteria for multiple tests.
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5.2 A distribution free Unitary Events method in neuroscience

Following the work presented in Chapter 4, and focusing on the neuroscience application which has
motivated it, we introduce a new distribution free Unitary Events (UE) method, named Permutation
UE, in a paper with Mélisande Albert, Yann Bouret, and Patricia Reynaud-Bouret under revision in
a neuroscience journal [15].
Before precisely describing this method, which consists in a multiple testing procedure involving the
permutation independence tests based on delayed coincidence count, as defined in Section 4.4, we
briefly come back to the experimental protocol and the problem at hand.

5.2.1 Experimental design, data and testing problem

As explained in Chapter 4, the eventual time dependence either between cerebral areas or between
neurons, and in particular the synchrony phenomenon, has been and is still vastly debated and investi-
gated as a potential element of the neuronal code (see [Sin93] for instance). To detect this phenomenon
at the microscopic level, multi-micro-electrodes are used to record the nearby electrical activity. Af-
ter pretreatment, the time occurrences of action potentials (spikes) for several neurons are available.
One of the first steps of analysis is then to assess whether two simultaneously recorded spike trains,
corresponding to two different neurons, are dependent or not.
The data used here were partially published in previous experimental studies [RGDG00, GR03, RGM06]
and also treated in [TMRGRB14]. These data were collected on a 5-year-old male Rhesus monkey
who was trained to perform a delayed multidirectional pointing task. Concretely, the animal sat in a
primate chair in front of a vertical panel on which touch-sensitive light-emitting diodes, the targets,
were mounted. After the preparatory signal (PS) consisting in the illumination of one of the targets in
green, a response signal (RS) illuminated the target that the monkey had to touch in red. Data recorded
from several micro-electrodes were amplified and band-pass filtered, and using a window discriminator,
spike trains from only one single neuron per electrode were then isolated (see [15] for instance for
more details about the experimental design). Neuronal data (the spike trains) together with behavior
data (such as the reaction time or the movement time of the monkey) were stored on a PC for off-line
analysis with a time resolution of 10kHz.
In the present study, only trials where the response signal (RS) occurred at 1.7s, from the pair of
neurons 13 are considered, as they were already treated in [TMRGRB14].

The trials were recorded on a time interval [0, T ] with T = 2.2s. From these data, we aim at detecting
precise locations of dependence periods between the two neurons of the pair 13.
To this end, we consider a collectionW of small time windows, that are potentially overlapping intervals
covering the whole interval [0, T ]. The problem at hand then becomes a multiple testing problem of the
collection of hypotheses H = {HW , W ∈ W}, where each HW can be expressed as "the two neurons
of the pair 13 are independent on W".

On each window W in W, the data restricted to W are assumed to be the observation of a sample
X = Xn = (X1, . . . , Xn) whose distribution follows the modelM(2)

point proc. of Chapter 4, just replacing
the interval of observation [0, 1] by W , that is

M(2)
point proc. X = Xn = (X1, . . . , Xn), where

(
Xi = (X1

i , X
2
i )
)
i≥1

is a sequence of i.i.d. pairs of
finite point processes defined on (Ω,A,P), observed on X = W , with joint distribution
P , with marginals P1 and P2.

Among the most popular methods used to detect dependence periods between two neurons, is the
Unitary Events (UE) method of Grün and collaborators [Grü96, GDA10], which has been applied in
the last decade on a large amount of real data (see for instance [KRPA+09] and references therein).
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From the initial method, substantial upgrades have been developed, like in particular the distribution
free methods based on a bootstrap approach named trial-shuffling (see [PG03, PDG03]). We show in
[15] that the test statistic used in these methods to detect dependence on a given window is not correctly
centered, which makes the trial-shuffling approach inappropriate. The bootstrap and permutation tests
proposed in [12], and presented in Chapter 4, both overcome this difficulty. As explained in Chapter 4,
the permutation tests should nevertheless be preferred as they guarantee a strict control of the first
kind error rate, and are still at least as powerful as the other reasonable tests. Hence, we use these
permutation tests, and integrate them in a multiple testing procedure.

5.2.2 Single permutation independence tests

Let us here focus on a single window W in W, and consider the problem of testing the null hypothesis
HW , from data modeled byM(2)

point proc. above.
In [12], we propose new tests that suit the dependence feature that has to be detected in the present
neuroscience issue, based on the test statistic
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with ϕcoincδ (X1, X2) =
∫
W 2 1|u−v|≤δdNX1(u)dNX2(v) (see (4.4) and (4.1)). A detailed algorithm to

compute ϕcoincδ (X1, X2), with a study of its complexity, are provided in [15].
The corresponding critical values are constructed from a classical bootstrap or permutation approach,
and approximated by a Monte Carlo method to lead to the tests φ∗MC,+
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,α defined by (4.10), (4.17) and (4.21).

Notice that when such resampling approaches are used, the normalization factor in the test statistic,
that is

√
n/ (n(n− 1)), can be removed provided that it is also removed in the bootstrapped and

permuted test statistics used to compute the critical values.
Furthermore, it has to be underlined that Un,h
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where C(Xn) is defined as in (4.2) by C(Xn) =
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.

As the term
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i′) is invariant by permutation, that is, for any permutation πn in

Sn,
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, C(Xn) can be used as test statistic in the

permutation tests, as well as
√
nUn,h

ϕcoinc
δ

(Xn).
Such a "rough" test statistic was already used in the trial-shuffling methods. However, in this case, as
in our classical bootstrap approach, it is important to see that the term

∑n
i,i′=1 ϕ

coinc
δ (X1

i , X
2
i′) is not

resampling-invariant anymore, which makes the use of C(Xn) as test statistic irrelevant.

As explained above, we here choose to use the permutation tests, and since neuroscientists expect to
assess whether coincidences occur either more or less than what may be due to chance, we in particular
focus on the upper and lower-tailed tests φ?MC,+

n,h
ϕcoinc
δ

,α and φ?MC,−
n,h

ϕcoinc
δ

,α.

For practical convenience, these two tests are in fact expressed through their associated p-values. So,
let B be a given number of Monte Carlo simulations, and (Π1

n, . . . ,Π
B
n ) be a sample of B i.i.d. random

permutations uniformly distributed on Sn. Set for every b in {1, . . . , n}, C?b = C
(
X
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)
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)
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)
. The p-values associated with the tests φ?MC,+
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,α
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and φ?MC,−
n,h

ϕcoinc
δ

,α are respectively defined by

 p?MC,+
W = 1

B+1

(
1 +

∑B
b=1 1C?b≥C(Xn)

)
,

p?MC,−
W = 1

B+1

(
1 +

∑B
b=1 1C?b≤C(Xn)

)
.

From [RW05, Lemma 1] (see Lemma 4), the tests that reject HW when p?MC,+
W or p?MC,−

W is less than
α in (0, 1) are proved to be both of level α.

5.2.3 Permutation UE method

Let us now consider the whole collection of windows W. Dealing with the multiple testing problem
described above, we propose a multiple test named the Permutation UE method, which consists in
integrating the above single permutation tests based on the p-values p?MC,+

W and/or p?MC,−
W for W in

W, in Benjamini and Hochberg’s procedure.
Notice that when we only consider the upper-tailed tests that is the p-values p?MC,+

W (or similarly only
the lower-tailed tests), when the windows in the collection are disjoint, and when the considered point
processes in the model M(2)

point proc. are (nonnecessarily homogeneous) Poisson processes, the p-values
are independent. Therefore, the original procedure of Benjamini and Hochberg is proved to control the
FDRP for every P in P. The correction of Benjamini and Yekutieli can be used in other cases.
We give below the complete algorithm that enables to assess if the coincidence count is significantly
too large or too small on each window, which is a useful information for neuroscientists.'

&

$

%

Permutation UE algorithm

Fix real numbers δ > 0 and q in (0, 0.5) and an integer B larger than 2.
- Do in parallel for all window W = [a, b] in W:

* Extract the points of the X1
i ’s and X

2
i ’s in [a, b].

* For all (i, j) in {1, ..., n}2, compute ai,j = ϕcoincδ

(
X1
i , X

2
j

)
over [a, b]

by the delayed coincidence count algorithm (see [15])

* Draw at random B i.i.d. permutations Πb
n, 1 ≤ b ≤ B, and compute C?b =

∑
i ai,Πbn(i).

* Compute also Cobs =
∑

i ai,i.

* Return p+
W = 1

B+1

(
1 +

∑B
b=1 1C?b≥Cobs

)
and p−W = 1

B+1

(
1 +

∑B
b=1 1C?b≤Cobs

)
.

- Perform the procedure of [BH95] on the set of the above 2#W p-values:

* Sort the p-values p(1) ≤ ... ≤ p(2#W).

* Find k = max{i, p(i) ≤ iq/(2#W)}.

* Return all the (W, εW )’s, for which W is associated with one of the p-values p(i) for i ≤ k,

with εW = 1 if p+
W ≤ p(k), so the coincidence count is significantly too large on W ,

and εW = −1 if p−W ≤ p(k), so the coincidence count is significantly too small on W .

The code has been parallelized in C++ and interfaced with R. The full corresponding R-package is a
work in progress but the program is available at: https://github.com/ybouret/neuro-stat.

The experimental results on the chosen real data, with δ = 0.02s, q = 0.05 and B = 10000 are presented
in Figure 5.1. Our Permutation UE method (P) is compared with the MTGAUE method (MTGAUE)
of [TMRGRB14], devoted to Poisson processes, and the trial-shuffling method (TSC) of [PG03].
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MTGAUE TSC P

Figure 5.1 – Raster plots for the pair of neurons 13. In black the Unitary Events where the coincidence
count is significantly too large for the three methods (MTGAUE, TSC and P). No interval was detected
for a significantly too small coincidence count. Signs on bottom correspond to behavioral events. The
first black vertical bar corresponds to the preparatory signal (PS), the gray vertical bar to the expected
signal (ES), the second black vertical bar to the response signal (RS).

Permutation UE method detects less windows than both (MTGAUE) and (TSC) methods, but the
detected windows are still in adequation with the experimental or behavioral events. The simulation
study performed in [15] let us think that the extra detections of both (MTGAUE) and (TSC) may be
false discoveries, since both methods do not control the FDR as well as the Permutation UE method.

5.3 Family-Wise Separation Rates for multiple testing

The details of the work described in this section can be found in [14]. It is the result of a collabora-
tion with Matthieu Lerasle and Patricia Reynaud-Bouret, which is currently continuing with Nicolas
Verzelen.

As stated in the introduction, many first kind error-related criteria have been introduced in the multiple
testing literature, such as the wFWER, the FWER or more generally the k − FWER, the PFER, the
FDP, or the popular FDR used in Section 5.2. By contrast, very few articles deal with the optimality of
multiple tests in terms of second kind error. The articles by Lehmann, Romano, and Shaffer [LRS05],
and by Romano, Shaikh and Wolf [RSW11] both give maximin type optimality results, but each
with a different notion of maximin optimality. While Romano, Shaikh, and Wolf [RSW11] consider
the minimum probability of rejecting at least one hypothesis when the hypotheses are not all true
simultaneously, Lehmann, Romano, and Shaffer [LRS05] consider the minimum probability of rejecting
one or more false hypotheses when at least one hypothesis deviates from the truth at a given degree.
We propose here new second kind error-related criteria to evaluate multiple tests whose FWER is
controlled by a prescribed level α in (0, 1), inspired by the nonasymptotic minimax theory for non-
parametric tests of a single null hypothesis introduced by Baraud [Bar02].
The literature on minimax and minimax adaptive testing is huge (see e.g., Chapter 1 and Chapter 3),
and provides a now well-known and convenient framework to study the theoretical performance of
nonparametric tests of single null hypotheses. Our purpose here is to provide such a framework in the
multiple testing context.
Most of minimax adaptive tests of a single null hypothesis (H0 ) are based on the aggregation of a
collection of minimax tests for different null hypotheses, all related to (H0 ). We first investigate the
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parallel that can be drawn between such aggregated tests, and some classical single-step or step-down
multiple testing procedures. From this parallel, we define the criterion of weak Family-Wise Separation
Rate, denoted by wFWSR, which extends the notion of uniform separation rate for tests of a single
null hypothesis to the multiple testing context, and its stronger counterpart: the (strong) Family-Wise
Separation Rate, denoted by FWSR. This last criterion is in fact the key point to lay the foundations
of a minimax theory for multiple tests whose FWER is controlled by a prescribed level α. The FWSR
and its corresponding benchmark, the minimax Family-Wise Separation Rate, are thus new tools to
evaluate the second kind error performance of a multiple test. Considering simple multiple testing
problems in Gaussian regression frameworks, we prove for instance that in some cases, the FWSR of
all the Bonferroni, Holm and min-p procedures are optimal from this minimax point of view, whereas
in other cases, the Bonferroni procedure is clearly sub-optimal. Beyond the evaluation of a multiple test
itself, the minimax Family-Wise Separation Rate can also be viewed as an indicator of the difficulty
or complexity of the considered testing problem. In particular, we exhibit general conditions on the
considered hypotheses, which guarantee that the minimax Family-Wise Separation Rate for multiple
tests is lower bounded by the classical minimax Separation Rate for single tests, thus formalizing the
intuition that multiple testing is more difficult than single testing. Through our illustrations in Gaussian
regression frameworks, we furthermore prove that when these general conditions are not satisfied, the
minimax Family-Wise Separation Rate for multiple tests may be smaller than the classical minimax
Separation Rate for single tests, which may suggest, looking at things superficially, that multiple testing
may be easier than single testing in some cases. This apparent counter-intuitive result in fact leads
to a deeper analysis of the introduced criteria, and to a further reflection about the basic nature of
a multiple testing problem, focusing on its fundamental differences with single testing problems. The
emphasis is here placed on the importance attached, in a multiple testing problem, to each individual
tested hypotheses, contrary to an aggregation-based single testing problem where only a single null
hypothesis contained in all the tested hypotheses has to be taken into account.

5.3.1 Parallel between aggregated tests and multiple tests

In the following, for any subset G of H, ∩G is an abbreviation for ∩H∈GH, e.g., ∩H = ∩H∈HH.
Regarding Lemma 1, as explained above, in order to more conveniently draw a parallel between aggre-
gated tests, that are usually expressed through test statistics TH and corresponding càdlàg quantiles
F−1
H,−(1 − α), and multiple tests that are usually expressed through p-values pH = 1 − FH,−(TH), we

focus all along this section on single tests on the form: 1{TH>F−1
H,−(1−α)} = 1{pH<α}. In particular, for

sake of simplicity, when we refer in the sequel to well-known procedures such as Bonferroni or Holm’s
ones, we in fact refer to the versions of these procedures written via single tests of this form, though
the original ones are in fact written with single tests of the form 1{pH≤α}.

Multiple tests controlling the Family-Wise Error Rate. Considering the FWER as first kind
error rate evaluation criterion, one main concern is to construct a multiple test R such that

FWER (R) ≤ α, (5.3)

for a given prescribed level α in (0, 1), which obviously also implies that wFWER (R) ≤ α.
A large number of multiple tests satisfying (5.3) have been constructed, among them the historical
procedures of Bonferroni RBonf or RwBonf described above, and of Holm [Sim86, Hol79], and the more
recent min-p type procedures (see [DVDL07] for instance). Many of these procedures can be described
via the general sequential rejection scheme proposed by Goeman and Solari [GS10], which consists in
iteratively rejecting hypotheses through an application N from the set of all subsets of H to itself, as
follows.
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1. Start with R0 = ∅.
2. For any n ≥ 0, build Rn+1 = Rn ∪N (Rn).

3. Define R = limn→∞Rn.

For any prescribed α in (0, 1), Goeman and Solari [GS10, Theorem 1] proved that sequential rejective
procedures satisfy (5.3), as soon as the two conditions below are true:

∀S ⊂ S ′ ⊂ H, N (S) ⊂ S ′ ∪N (S ′), (5.4)

∀P ∈ P, P (N (F(P )) ⊂ F(P )) ≥ 1− α. (5.5)

Let us focus on a generic example, the min-p procedure, assuming that a collection of p-values pH , for
H in H, is given, as in the definition of RBonf (5.1) and RwBonf (5.2) above.
For any subset G of H, and any α in (0, 1), let cmp,G,α be a nonincreasing function of G such that

∀P ∈ ∩G, P
(

min
H∈G

pH < cmp,G,α

)
≤ α.

Then the min-p procedure is defined as a sequential rejective procedure with N equal to

Nmp : S 7→
{
H ∈ H \ S, pH < cmp,H\S,α

}
.

As it satisfies (5.4) and (5.5), by [GS10, Theorem 1], the min-p procedure has a FWER controlled by
α. It is always possible to use cmp,G,α = α/#G: the obtained multiple test is due to Holm [Hol79], so
we denote it by RHolm and the corresponding application by NHolm.
Remark that the first step of this procedure in fact corresponds to RBonf .
If the distribution of minH∈G pH (with càglàd c.d.f. FG,−) does not depend on P in ∩G and is known,
one can now take cmp,G,α = F−1

G,−(α). The resulting rejection set is then denoted by Rmp. Note that
this multiple testing procedure is less conservative than RHolm, that is, RHolm ⊂ Rmp. If FG,− is
unknown, the quantiles may be replaced by random quantiles, depending on X, based on permutation
or bootstrap approaches [RW05, RW07, RW10], at the possible price of an asymptotic control of the
FWER instead of an exact control. Finally, as for the Bonferroni procedure, the min-p procedures may
also be extended to weighted min-p procedures by defining

Nwmp : S 7→
{
H ∈ H \ S, pH < wH cwmp,H\S,α

}
,

where (wH )H∈H is still a family of positive weights satisfying
∑

H∈HwH ≤ 1, and where cwmp,G,α
satisfies for any α in (0, 1),

∀P ∈ ∩G, P
(

min
H∈G

w−1
H pH < cwmp,G,α

)
≤ α.

When the distribution of minH∈G w
−1
H pH (with càglàd c.d.f. Fw,G,−) does not depend on P in ∩G and

is known, one can take cwmp,G,α = F−1
w,G,−(α), which defines rejection sets denoted by Rwmp. Note that

these last procedures are very close to the balanced procedure of Romano and Wolf [RW10].

Aggregated tests controlling the first kind error rate. Let us now consider the problem of
testing a single null hypothesis (H0 ) P ∈ P0 against (H1 ) P ∈ P \ P0, and recall, in the present
notation, the principle of aggregated tests described in Section 1.1.2.
Let H be a collection of hypotheses, chosen such that P0 ⊂ ∩H. For each hypothesis H in the collection
H, an individual test φH of the null hypothesis H against the alternative P \H is constructed. The
obtained collection of tests is here denoted by ΦH = {φH , H ∈ H}.
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Then, the corresponding aggregated test Φ̄H consists in rejecting (H0 ) if at least one H in H is rejected
with φH , that is

Φ̄H = sup
H∈H

φH . (5.6)

The first kind error rate of an aggregated test Φ̄H of the single null hypothesis (H0) is defined as in (1)
by

ER1

(
Φ̄H,P0

)
= sup

P∈P0

P
(

Φ̄H = 1
)

= sup
P∈P0

P

(
sup
H∈H

φH = 1

)
.

Following the Neyman-Pearson principle, this criterion should be controlled by a prescribed level α in
(0, 1). For any hypothesis H of the collection H, the individual test φH is usually defined from a test
statistic TH , whose distribution does not depend on P provided that P belongs to P0. Respectively
denoting by FH,− and F−1

H,− the càglàd c.d.f. and càdlàg quantile function of this distribution under
(H0 ), φH is then defined as 1{TH>F−1

H,−(1−uH,α)}, where uH,α is chosen so that the aggregated test is
actually of level α, that is

ER1

(
Φ̄H,P0

)
≤ α.

The most obvious choice for uH,α is a Bonferroni-type choice uH,α = α/#H. This leads to the
Bonferroni-type aggregated test Φ̄Bonf

H based on the collection

ΦBonf
H =

{
φBonfH = 1{TH>F−1

H,−(1−α/#H)}, H ∈ H
}
.

A weighted Bonferroni-type choice uH,α = wHα can also be considered where (wH)H∈H is a family of
positive weights such that

∑
H∈HwH ≤ 1. This leads to the weighted Bonferroni-type aggregated test

Φ̄wBonf
H based on the collection

ΦwBonf
H =

{
φwBonfH = 1{TH>F−1

H,−(1−wHα)}, H ∈ H
}
.

A less conservative choice in practice and still guaranteeing a level α consists in taking

uH,α = wH sup

{
u, sup

P∈H0

P
(
∃H ∈ H, TH > F−1

H,−(1− wHu)
)
≤ α

}
.

This leads, when wH = 1/#H, to the aggregated test Φ̄BHL
H proposed by Baraud, Huet, and Laurent

[BHL03], based on the collection

ΦBHL
H =

{
φBHLH = 1{TH>F−1

H,−(1−uα)}, H ∈ H
}
,

with

uα = sup

{
u, sup

P∈H0

P
(
∃H ∈ H, TH > F−1

H,−(1− u)
)
≤ α

}
,

and, in the general case, to the aggregated test Φ̄FLR
H proposed in [7], based on the collection

ΦFLR
H =

{
φFLRH = 1{TH>F−1

H,−(1−uH,α)}, H ∈ H
}
.

Correspondences between multiple and aggregated tests. Let us here present the main cor-
respondences that can be underlined between multiple tests and aggregated tests. To do so, we always
assume that a finite collection of hypotheses H and a single null hypothesis (H0 ) P ∈ P0, with
P0 ⊂ ∩H, are given.
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From any collection ΦH = {φH , H ∈ H} of tests φH of the single hypothesis H defining an aggregated
test, a multiple test of H is constructed as

R (ΦH ) = {H ∈ H, φH = 1} .

Conversely, from any multiple test R of H, we construct

Φ̄(R) = 1{R6=∅},

which can be seen as an aggregated test of the single null hypothesis (H0 ).

First notice that
wFWER (R (ΦH )) = ER1

(
Φ̄H,∩H

)
,

and conversely
wFWER (R) = ER1

(
Φ̄ (R) ,∩H

)
. (5.7)

Since P0 ⊂ ∩H, wFWER (R (ΦH )) ≥ ER1

(
Φ̄H,P0

)
and wFWER (R) ≥ ER1

(
Φ̄ (R) ,P0

)
. Except

when P0 = ∩H, controlling wFWER (R (ΦH )) or wFWER (R) is thus more difficult than controlling
ER1

(
Φ̄H,P0

)
or ER1

(
Φ̄ (R) ,P0

)
respectively.

Next, assume that for every H in H, a test statistic TH , whose distribution does not depend on P pro-
vided that P belongs toH, is given and denote by pH its corresponding p-value, as defined by Lemma 1.
We prove in [14, Proposition 2] that for such a collection of p-values {pH , H ∈ H},R(ΦBonf

H ) = RBonf ,
and Φ̄Bonf

H = Φ̄(RBonf ) = Φ̄(RHolm). If additionally the distribution of minH∈Hw
−1
H pH does not de-

pend on P provided that P belongs to ∩H, then Nwmp(∅) = R(ΦFLR
H ) and Φ̄FLR

H = Φ̄(Rwmp).
Notice that the assumptions needed to establish [14, Proposition 2] are quite strong, and that few
frameworks satisfy them. Among these frameworks, we will focus on classical Gaussian regression ones
to illustrate our results.

5.3.2 From uniform Separation Rates to Family-Wise Separation Rates

Let d be a distance on P, and for any P in P, any subset Q of P, let d (P,Q) = infQ∈Q d(P,Q).

Uniform separation rates for aggregated tests. As seen in Chapter 1 and Chapter 3, uniform
separation rates are second kind error-related quality criteria of a test of

(H0 ) P ∈ P0 ⊂ P against (H1 ) P ∈ P \ P0.

Because P is in general too large to define separation rates over the whole set P properly, particularly
in nonparametric frameworks, these quantities are first defined on a subset Q of P. The question of
adaptivity with respect to Q can then be treated. More precisely, let us recall the following definitions
due to Baraud [Bar02], which can be viewed as nonasymptotic versions of Ingster’s definitions [Ing93].

Definition 9 (Uniform and minimax separation rate). Let α and β be fixed error rates levels in (0, 1),
and let Φ̄ be a level α test of a null hypothesis (H0 ) P ∈ P0 ⊂ P. For a subset Q of P, the uniform
separation rate of Φ̄ over Q with prescribed second kind error rate β is defined by

SRβ
d

(
Φ̄,Q,P0

)
= inf

{
r > 0, sup

P∈Q, d(P,P0)≥r
P (Φ̄ = 0) ≤ β

}
.

Note that this definition holds for any null hypothesis, that is any subset P0 of P, and in particular
for ∩H. Hence when P0 ⊂ ∩H, SRβ

d

(
Φ̄,Q,P0

)
≥ SRβ

d

(
Φ̄,Q,∩H

)
.

The corresponding minimax separation rate over Q with prescribed error rates α and β is defined as

mSRα,β
d (Q,P0 ) = inf

Φ̄, ER1( Φ̄,P0 )≤α
SRβ

d

(
Φ̄,Q,P0

)
,

where the infimum is taken over all possible level α tests.
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Definition 10 (Minimax (adaptive) test). Let Q be a collection of classes of probability distributions
Q ⊂ P. A level α test Φ̄ of the null hypothesis (H0 ) P ∈ P0 ⊂ P is said to be minimax over a class Q
of the collection Q if SRβ

d

(
Φ̄,Q,P0

)
achieves mSRα,β

d (Q,P0 ), possibly up to a multiplicative constant
depending on α and β. It is said to be minimax adaptive over Q if SRβ

d

(
Φ̄,Q,P0

)
achieves, or nearly

achieves, mSRα,β
d (Q,P0 ), for all the classes Q in Q simultaneously, without knowing in advance to

which class of the collection the distribution P may belong.

Family-Wise Separation Rates for multiple tests. Following the idea of the definition of the
weak Family-Wise Error Rate wFWER of R, which is in fact equal to the first kind error rate of Φ̄(R)
for the null hypothesis ∩H (see (5.7)), a natural idea would be to define a notion of weak Family-Wise
Separation Rate as

SRβ
d

(
Φ̄(R),Q,∩H

)
= inf

{
r > 0, sup

P∈Q, d(P,∩H )≥r
P (R = ∅) ≤ β

}
.

However, in this second kind error criterion, only alternatives which deviate from the intersection ∩H
with a certain distance are taken into account. Considering such definition would thus amount to
confusing multiple tests with their corresponding aggregated tests, seeing all the tested hypotheses as
only intermediate hypotheses to an ultimate one: ∩H. This would depart from the multiple testing
philosophy, where each tested hypothesis has its own significance and has to be taken into account by
itself. In order to address this requirement, instead of alternatives P in Q such that "d (P,∩H ) ≥ r"
(for r > 0), are considered alternatives P in Q such that "∃H ∈ H, d (P,H ) ≥ r".
So, we introduce the set of false hypotheses under P at least at distance r from P , that is Fr(P ) =
{H ∈ H, d(P,H) ≥ r}, which enables us to introduce the following notion of weak Family-Wise Sep-
aration Rate for a multiple test.

Definition 11 (Weak Family-Wise Separation Rate). Let α and β be fixed error rates levels in (0, 1),
and let R be a multiple test of H, whose FWER is controlled by α. For any subset Q of P, the weak
Family-Wise Separation Rate of R over Q with prescribed second kind error rate β is defined by

wFWSRβ
d (R,Q) = inf

{
r > 0, sup

P∈Q, Fr(P )6=∅
P (R = ∅) ≤ β

}

= inf

{
r > 0, inf

P∈Q, Fr(P )6=∅
P (R 6= ∅) ≥ 1− β

}
.

Note that the quantity infP∈Q, Fr(P )6=∅ P (R 6= ∅) involved in the above definition is clearly related to
β#H,1(α, r) = infP∈Q, Fr(P )6=∅ P (R∩ F(P ) 6= ∅) in [LRS05] which is expected to be maximized in the
maximin optimality criterion.
Furthermore, it is easy to see that wFWSRβ

d (R,Q) ≤ SRβ
d

(
Φ̄(R),Q,∩H

)
, with an equality if the

collection of hypotheses H and the distance d satisfy

∀r > 0, Fr(P ) 6= ∅ if and only if d(P,∩H) ≥ r. (5.8)

In particular, if the collection of hypotheses H is closed (under intersection), then condition (5.8) is
always satisfied. We state in [14] the following more general and useful result.

Proposition 7 (Fromont, Lerasle, Reynaud-Bouret, 2015). Let d be a distance on P, and Q be a
subset of P. If there exists some distance d′ on P such that:

∀P ∈ Q, ∀r > 0, Fr(P ) 6= ∅ if and only if d′(P,∩H) ≥ r, (5.9)

then for every β in (0, 1), for every multiple test R of H,

wFWSRβ
d (R,Q) = SRβ

d′
(

Φ̄(R),Q,∩H
)
.



100 CHAPTER 5. MULTIPLE TESTS

We now introduce the stronger notion of Family-Wise Separation Rate.

Definition 12 (Family-Wise Separation Rate). Let α and β be fixed error rates levels in (0, 1), and
let R be a multiple test of H, whose FWER is controlled by α. For any subset Q of P, the Family-Wise
Separation Rate of R over Q with prescribed second kind error rate β is defined by

FWSRβ
d (R,Q) = inf

{
r > 0, sup

P∈Q
P (Fr(P ) ∩ (H \R) 6= ∅) ≤ β

}
= inf

{
r > 0, inf

P∈Q
P (Fr(P ) ⊂ R) ≥ 1− β

}
.

Note that wFWSRβ
d (R,Q) ≤ FWSRβ

d (R,Q) .
Let us now introduce the corresponding minimax approach for multiple tests.

Definition 13 (Minimax (adaptive) multiple test). Let α and β be fixed error rates levels in (0, 1),
and Q be a subset of P.
The minimax Family-Wise Separation Rate over Q with prescribed FWER α and prescribed second
kind error rate β is defined by

mFWSRα,β
d (Q) = inf

R, FWER(R )≤α
FWSRβ

d (R,Q) ,

where the infimum is taken over all possible multiple tests with a FWER controlled by α.
A multiple testR, whose FWER is controlled by α, is then said to be minimax overQ if FWSRβ

d (R,Q)

achieves mFWSRα,β
d (Q), possibly up to a multiplicative constant depending on α and β.

Finally, it is said to be minimax adaptive over a collection Q of classes Q if FWSRβ
d (R,Q) achieves,

or nearly achieves, mFWSRα,β
d (Q), for all the classes Q in Q simultaneously, without knowing in

advance to which class the distribution P may belong.

It is worth to underline that when the collection H is reduced to a single hypothesis or subset P0 of
P, for any subset Q of P,

mFWSRα,β
d (Q) = mSRα,β

d (Q,P0 ) .

In this sense, the present minimax approach for multiple tests can be viewed as a generalization of the
classical minimax theory for single hypothesis tests.

Links between minimax Separation Rates and minimax Family-Wise Separation Rates.
Even when H is not reduced to a single hypothesis or subset P0 of P, both theories also have, under
particular conditions, close links that are established in the following result.

Theorem 13 (Fromont, Lerasle, Reynaud-Bouret, 2015). Let d be a distance on P, and Q be a subset
of P. If there exists some distance d′ on P satisfying (5.9), then for every α, β in (0, 1),

mFWSRα,β
d (Q) ≥ mSRα,β

d′ (Q,∩H ) . (5.10)

This result thus provides lower bounds for the minimax Family-Wise Separation Rates over some
classes Q from the existing literature on classical minimax testing. As a particular case, if (5.8) holds,
then for any subset Q of P and α, β in (0, 1),

mFWSRα,β
d (Q) ≥ mSRα,β

d (Q,∩H ) ,

which formalizes the natural idea that testing multiple hypotheses is more difficult than testing a single
hypothesis.
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5.3.3 Illustrations in Gaussian regression frameworks

Independent Gaussian regression model. The observed random variable X is here assumed to
be a random Gaussian vector according to the following model.

M(1)
ind. reg. X = Xn = (X1, . . . , Xn)′ has a distribution P = Pf defined by: Xi = fi + σεi

for i in {1, . . . , n}, f = (f1, . . . , fn)′ being an unknown real vector, the εi’s being
independent standard Gaussian random variables, and σ being a known positive real
number.

Two different collections of hypotheses, that is two different collections of subsets of P = {Pf , f =
(f1, . . . , fn)′ ∈ Rn} are considered, that can be defined from the canonical basis {e1, . . . , en } of Rn.
The first one is given by H = {HSi , i = 1, ..., n}, where for every i in {1, . . . , n}, Si = Vect(ei) and

HSi = {Pf , fi = 0} = {Pf , f ∈ S⊥i }.

The second one is given byH = {HS̄i
, i = 1, ..., n}, where for every i in {1, . . . , n}, S̄i = Vect(e1, . . . , ei),

so
HS̄i

= {Pf , f1 = . . . = fi = 0} =
{
Pf , f ∈ S̄⊥i

}
.

Both collections in particular satisfy ∩H = {P0} := P0.

We here consider various metrics on P. Let for g = (g1, . . . , gn)′ and f = (f1, . . . , fn)′ in Rn,

d∞(Pf , Pg) = ‖f − g‖∞ = max
i=1,...,n

|fi − gi|, (5.11)

and for s ≥ 1,

ds(Pf , Pg) =

(
n∑
i=1

|fi − gi|s
)1/s

. (5.12)

As in [Bar02], we investigate the minimax Family-Wise Separation Rates over the classes of alternatives
Q = Pk defined, for any integer k ≤ n, by

Pk = {Pf , |f |0 ≤ k} , (5.13)

where |f |0 is the number of nonzero coefficients in f .
For these classes, one knows (see [Bar02]) in particular that for α and β in (0, 1) such that α+β ≤ 0.5
and k ≥ 1,

mSRα,β
d2

(Pk,P0 ) ≥ σ
(
k ln

(
1 +

n

k2
∨
√
n

k2

))1/2

, (5.14)

and that this lower bound is tight.
Baraud, Huet and Laurent [BHL03] then build aggregated tests that are adaptive over a collection of
classes Pk, when σ2 is not assumed to be known anymore, and Laurent, Loubes, Marteau [LLM12]
further study the case of heteroscedasticity. In a preliminary version [LLM], they also prove that for
α, β in (0, 1) such that α+ β ≤ 0.5,

mSRα,β
d∞

(Pk,P0 ) ≥ σ
√

ln(1 + n), (5.15)

by remarking that

mSRα,β
d∞

(Pk,P0 ) ≥ mSRα,β
d∞

(P1,P0 ) = mSRα,β
d2

(P1,P0 )

and using Baraud’s lower bound.
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Let us firstly focus on the multiple testing problem of H = {HSi , i = 1, ..., n}. Let k be a fixed integer
in {1, . . . , n}, and s in [1,∞]. Using d′ = d∞ in Theorem 13 leads to

mFWSRα,β
ds

(Pk ) ≥ mSRα,β
d∞

(Pk,P0 ) ,

and from (5.15), we deduce that

mFWSRα,β
ds

(Pk ) ≥ σ
√

ln (1 + n). (5.16)

Let F be the c.d.f. of a standard Gaussian distribution, and for every i in {1, . . . , n}, pi be the p-value
associated with the test 1{|Xi|σ−1>F−1(1−α/2)}, given by pi = 1 − F

(
|Xi|σ−1

)
(see Lemma 1). The

multiple tests RBonf ,RHolm,Rmp and R(ΦBHL
H ) based on these p-values are proved to have a FWSR

for the distance ds (s in [1,∞]) over Pk upper bounded by

σ
(√

2 ln (n/α) +
√

2 ln (k/(2β))
)
.

This proves on the one hand that the minimax Family-Wise Separation Rate over Pk is of order
σ(lnn)1/2. By comparison, the minimax Separation Rate mSRα,β

d2
(Pk,P0) is of order σnγ/2(lnn)1/2

when k is proportional to nγ for γ in (0, 1/2) (see (5.14)), which is much larger than this minimax
Family-Wise Separation Rate. This could let think that, when considering the distance d = d2, per-
forming a multiple testing procedure may be much easier than performing a test of a single hypothesis,
which would be completely counter-intuitive. However, making such a comparison consists in compar-
ing quantities that are not comparable at all. When d = d2, the set of alternatives considered in the
definition of wFWSRβ

d2
(R,Pk) of any multiple test R is in fact smaller than the set of alternatives in

the definition of SRβ
d2

(Φ̄(R),Pk,P0), but exactly equal to the one in SRβ
d∞

(Φ̄(R),Pk,P0). This explains
why mFWSRα,β

d2
(Pk ), and also more generally mFWSRα,β

ds
(Pk ) (s in [1,∞]), are in fact of the same

order as the minimax Separation Rate mSRα,β
d∞

(Pk,P0) determined in [LLM].
This proves on the other hand that the four considered multiple testsRBonf ,RHolm,Rmp andR(ΦBHL

H )
are minimax over the classes Pk with a Family-Wise Separation Rate of order σ(lnn)1/2, up to a
multiplicative constant. Since the considered multiple tests do not depend on the value of k, they
are moreover minimax adaptive over the whole collection of classes Pk, for k = 1 . . . n. Notice that
asymptotically, there is here no additional price to pay for adaptivity, phenomenon which is rather
rarely observed in minimax adaptive testing problems (see Chapter 1 and Chapter 3 for instance).
Furthermore, notice that when H is reduced to a single hypothesis HSi , then mFWSRα,β

ds
(Pk ) =

mSRα,β
ds

(Pk, HSi), both being of order σ. In this sense, (lnn)1/2 can be viewed as the price to pay for
multiplicity.
The study of the present Gaussian framework highlights another interesting point. Baraud’s [Bar02]
result gives that when

√
n ≤ k ≤ n, mSRα,β

d2
(Pk,P0) is of order σn1/4.

As seen above, RBonf achieves an optimal FWSRβ
d2

over the Pk’s. However, we prove in [14, Proposi-
tion 8] that its corresponding aggregated test Φ̄(RBonf ) does not necessarily achieve mSRα,β

d2
(Pk,P0)

when
√
n ≤ k ≤ n. Conversely, one can have some aggregated tests that are minimax, whereas the

corresponding multiple tests are not.

Let us now secondly focus on the multiple testing problem of H = {HS̄i
, i = 1, ..., n}.

The main point that has to be pointed out here is that this collection of nested hypotheses is closed
under intersection, and so (5.8) (or (5.9) with d′ = d) is satisfied for d = ds, with any s in [1,∞]. From
Theorem 13 and (5.14), we deduce in particular, that for α and β in (0, 1) such that α + β ≤ 0.5, for
k in {1, . . . , n},

mFWSRα,β
d2

(Pk ) ≥ σ
(
k ln

(
1 +

n

k2
∨
√
n

k2

))1/2

. (5.17)
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Considering the above p-values pi for i in {1, . . . , n}, we introduce the multiple test:

R̄ = {HS̄i
, min
j≤i

pj ≤ α/n}, (5.18)

which is a particular basic case of the variant of the closure method of [MPG76] introduced by Romano
and Wolf in [RW05, Algorithm 1 (idealized step-down method)] and [RW05, Theorem 1], when critical
values satisfy a monotonicity assumption. Then this test has a FWER controlled by α and for any k
in {1, . . . , n}, β in (0, 0.5),

FWSRβ
d2

(
R̄,Pk

)
≤ σ
√
k
(√

2 ln(n/α) +
√
−2 ln(2β)

)
.

For k proportional to nγ with γ ∈ [0, 1/2), this upper bound coincides with the lower bound obtained
in (5.17), up to some constant. Therefore, in this case, mFWSRα,β

d2
(Pk ) is of order σ(nγ lnn)1/2, and

the multiple test R̄ is minimax adaptive over the considered classes. Notice moreover that there is
again here no price to pay for adaptivity.

From these results, we deduce that some classical multiple testing procedures are optimal in the present
minimax sense. As some of these procedures, such as the Bonferroni, Holm, and the above basic variant
of the closure method introduced by Romano and Wolf [RW05], are in fact a priori not expected to give
optimality from a second kind error point of view, this may be a bit disturbing. We guess that the loss
in Family-Wise Separation Rates of such basic procedures is hidden in multiplicative constants and
that this loss would probably become more visible if the Gaussian vector X had a strong dependence
structure. This consideration motivated the next study, where it is shown that Bonferroni procedures
are not always optimal and can be outperformed by optimal min-p procedures in the minimax sense.

Gaussian regression model with strong dependency. As the gap in FWER between one-step
procedures such as Bonferroni ones, and step-down procedures such as min-p ones, is usually more
perceptible when the considered p-values are dependent, we here follow the same idea, and introduce
a somewhat artificial, but nevertheless determinative, dependent Gaussian regression framework. The
chosen dependence structure is quite extreme, so that lower bounds for minimax Family-Wise Separa-
tion Rates can be easily deduced as in the classical minimax theory for single hypothesis tests.
Let τ be a partition of {1, . . . , n}. Let the observed random variable be a Gaussian random vector
X = (X1, . . . , Xn)′ distributed as in the following model.

M(1)
dep. reg. X = Xn = (X1, . . . , Xn)′ has a distribution P = Pf,τ defined by: Xi = fi + σεt for

every t in τ and every i in t, f = (f1, . . . , fn)′ being an unknown real vector, the
εt’s (t in τ) being independent standard Gaussian random variables, and σ being a
known positive real number.

We consider the collection of hypotheses H = {HSi , i = 1, ..., n}, and for any i = 1 . . . n, the same
above p-value pi.
Let T, k in {1, . . . , n} and

Pk,T = {Pf,τ , f ∈ Rn, |f |0 ≤ k and #τ = T } .

We prove (see [14, Propositions 10 and 11]) that for α, β in (0, 1), mFWSRα,β
d∞

(Pk,T ) is of order
σ ( lnT )1/2, and that in particular the min-p procedure Rmp associated with the p-values pi is minimax
adaptive over the collection of classes Pk,T .
By contrast, it is also proved (see [14, Proposition 12]) that for n large enough, the Bonferroni procedure
RBonf based on the same p-values has a FWSRβ

d∞
over Pk,T lower bounded by σ ( lnn)1/2, up to a

multiplicative constant, and therefore can not be minimax over Pk,T as soon as lnT << lnn.
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5.4 Perspectives

The purpose of the theoretical work presented in this chapter was to lay some foundations of a minimax
theory for multiple testing, and in this sense, it has to be viewed as only a starting point for future
studies of multiple tests from the minimax point of view.
Lots of emerging issues remain unsolved, encouraging us to pursue this path.
We have proved that the present theory may legitimate one-step and step-down procedures, such as
the Bonferroni, Holm or min-p ones for simple multiple testing problems in a very basic Gaussian
regression model, where p-values are clearly independent. Our results, and in particular the lower
bounds for the minimax Family-Wise Separation Rates, were obtained using classical tools and results
from the existing minimax theory for single hypothesis tests. We then have considered another Gaussian
regression model, where p-values are roughly dependent, where the Bonferroni procedure is suboptimal
from the minimax point of view, contrary to the min-p procedure which is proved to be minimax
adaptive. The present strong dependence structure enables us to use again known results in the classical
minimax theory for single hypothesis tests.
Studying some multiple testing problems in other frameworks, typically involving more reasonable
dependence structures, will be challenging, all the more as very few works deal with minimax single
testing in models suffering from dependency. Considering more complex classes of alternatives than
the ones introduced here is also an interesting matter. New approaches and tools to establish lower
bounds for the minimax Family-Wise Separation Rates will have to be developed.
All this will probably allow to validate already existing sophisticated multiple tests from the second
kind error angle, but will also make necessary the construction of new optimal multiple tests. A paper
dealing with these issues is in progress with Nicolas Verzelen.
Questions and problems known to appear in high dimension, which is inherent to many multiple testing
problems, will also have to be investigated within the present minimax theory.
Finally, and this is actually closely related to the above question of high dimension, extending the
criteria developed here, which are exclusively dedicated to multiple tests controlling the FWER, to
multiple tests controlling the False Discovery Rate would be a major progress. It seems to be definitely
more difficult, as no parallel between multiple tests controlling the FDR and aggregated tests can be
established as clearly as in the present work.
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