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Abstract

This article explores some theoretical aspects of a recent nonparametric method for
estimating a univariate regression function of bounded variation. The method ex-
ploits the Jordan decomposition which states that a function of bounded variation
can be decomposed as the sum of a non-decreasing function and a non-increasing
function. This suggests combining the backfitting algorithm for estimating additive
functions with isotonic regression for estimating monotone functions. The resulting
iterative algorithm is called Iterative Isotonic Regression (I.I.R.). The main result in
this paper states that the estimator is consistent if the number of iterations kn grows
appropriately with the sample size n. The proof requires two auxiliary results that
are of interest in and by themselves: firstly, we generalize the well-known consis-
tency property of isotonic regression to the framework of a non-monotone regression
function, and secondly, we relate the backfitting algorithm to von Neumann’s al-
gorithm in convex analysis. We also analyse how the algorithm can be stopped in
practice using a data-splitting procedure.

Index Terms — Nonparametric statistics, isotonic regression, additive models, met-
ric projection onto convex cones.
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1 Introduction

Consider the regression model
Y = r(X) + ε, (1)

where X and ε are independent real-valued random variables, with X distributed accord-
ing to a non-atomic law µ on [0, 1], E [ε] = 0 and E [ε2] = σ2. We want to estimate
the regression function r, assuming it is of bounded variation. Since µ is non-atomic, we
will further assume, without loss of generality, that r is right-continuous. The Jordan
decomposition states that r can be written as the sum of a non-decreasing function u and
a non-increasing function b

r(x) = u(x) + b(x). (2)

This decomposition is not unique in general. However, if one requires that both terms on
the right-hand side have singular associated Stieltjes measures and that

∫

[0,1]

r(x)µ(dx) =

∫

[0,1]

u(x)µ(dx), (3)

then the decomposition is unique and the model is identifiable. Let us emphasize that,
from a statistical point of view, this assumption on r is mild. The classical counterexam-
ple of a function that is not of bounded variation is r(x) = sin(1/x) for x ∈ (0, 1], with
r(0) = 0.

Our idea for estimating a regression function of bounded variation consists in viewing the
Jordan decomposition (2) as an additive model involving the increasing and the decreasing
parts of r. It leads to an “Iterative Isotonic Regression” estimator (abbreviated to I.I.R.)
that combines the isotonic regression and backfitting algorithms, two well-established al-
gorithms for estimating monotone functions and additive models, respectively.

Estimating a monotone regression function is the archetypical shape restriction estimation
problem. Specifically, assume that the regression function r in (1) is non-decreasing, and
suppose we are given a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of i.i.d. R×R valued random
variables distributed as a generic pair (X, Y ). Then denote x1 = X(1) < . . . < xn = X(n),
the ordered sample and y1, . . . , yn the corresponding observations. In this framework,
the Pool-Adjacent-Violators Algorithm (PAVA) determines a collection of non-decreasing
level sets solution to the least square minimization problem

min
u1≤...≤un

1

n

n∑

i=1

(yi − ui)
2 . (4)

Early works on the maximum likelihood estimators of distribution parameters subject
to order restriction date back to the 50’s, starting with Ayer et al. [2] and Brunk [7].
Comprehensive treatises on isotonic regression include Barlow et al. [3] and Robertson et
al. [29]. For improvements and extensions of the PAVA approach to more general order
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restrictions, see Best and Chakravarti [6], Dykstra [13], and Lee [23], among others.

The additive model was originally suggested by Friedman and Stuetzle [14] and pop-
ularized by Hastie and Tibshirani [18] as a way to accommodate the so-called curse of
dimensionality in a multivariate setting. It assumes that the regression function is the sum
of one-dimensional univariate functions. Buja et al. [9] proposed the backfitting algorithm
as a practical method for estimating additive models. It consists in iteratively fitting, in
each direction, the partial residuals from earlier steps until convergence is achieved.

In the present context, the backfitting algorithm is applied to estimate the univariate
regression function r in (2) by alternating isotonic and antitonic regressions on the partial
residuals in order to estimate the additive components u and b of the Jordan decompo-
sition (2). Guyader et al. [15] introduced the I.I.R. algorithm and investigated its finite

sample size behavior. Among other results, the authors state that the sequence r̂
(k)
n of

estimators obtained in this way converges, when increasing the number k of iterations,
to an interpolant of the raw data (see Section 2 below for details). As any interpolant
overfits the data, iterating the procedure until convergence is not desirable. In the present
paper, we go one step further and prove the consistency of this estimator. Before going
into more details, let us specify why it is impossible to apply known results from isotonic
regression theory as well as from additive models literature.

First, the consistency of the PAVA estimator was established by Brunk [7] and Hanson
et al. [17]. Brunk [8] proved its cube-root convergence at a fixed point and obtained the
pointwise asymptotic distribution, and Durot [12] provided a central limit theorem for the
Lp-error. We wish to emphasize that all these asymptotic results assume monotonicity of
the regression function r. In our context, at each stage of the iterative process, we ap-
ply an isotonic regression to an arbitrary function (of bounded variation). Consequently,
their consistency theorems do not apply. Our first result, namely Theorem 1, is to prove
the consistency of an isotonic regression estimator for the L2 projection of the regression
function onto the cone of monotone increasing functions.

Second, backfitting procedures and statistical properties of the resulting estimators have
been studied in a linear framework by Härdle and Hall [19], Opsomer and Ruppert [27],
Mammen, Linton and Nielsen [24], Horowitz, Klemelä and Mammen [20]. Alternative
estimation procedures for additive models have been considered by Kim, Linton and Hen-
gartner [22], and by Hengartner and Sperlich [21]. However, as the solution of (4) can
be seen as the metric projection of the raw data onto the cone consisting in vectors with
increasing components, the isotonic regression is not a linear smoother. It follows that
the results in the previous references do not apply in the study of the I.I.R procedure.
Interestingly, backfitted estimators in a non-linear case have also been studied by Mam-
men and Yu [25]. Specifically, in a multivariate setting, they assume that the regression
function is the sum of isotonic one-dimensional functions, and estimate each component
by iterating the PAVA in a backfitting fashion. However, as I.I.R. consists in applying
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monotone regressions to a non-monotone regression function, we can not share their re-
sults either.

As mentioned before, the main result addressed in this paper, i.e. Theorem 2, states
the consistency of the I.I.R. estimator. Denoting r̂

(k)
n the I.I.R. estimator resulting from

k iterations of the algorithm, we prove the existence of a sequence of iterations (kn),
increasing with the sample size n, such that

E
[
‖r̂(kn)n − r‖2

]
−→
n→∞

0

where ‖.‖ is the quadratic norm with respect to the law µ of X . Our analysis identifies
two error terms: an estimation error that comes from the isotonic regression, and an
approximation error that is governed by the number of iterations k.

The approximation term can be controlled by increasing the number of iterations. This is
made possible thanks to the interpretation of I.I.R. as a von Neumann’s algorithm, and by
applying related results in convex analysis (see Proposition 3). Let us remark that, as far
as we know, rates of convergence of von Neumann’s algorithm have not yet been studied
in the context of bounded variation functions. Hence, at this time, it seems difficult to
establish rates of convergence for the I.I.R. estimator without further restrictions on the
shape of the underlying regression function. Thus, the results we present here may be
considered as a starting point in the study of novel methods which would consist in ap-
plying isotonic regression with no particular shape assumption on the regression function.

The remainder of the paper is organised as follows. We first give further details and
notations about the construction of I.I.R. in Section 2. The general consistency result for
isotonic regression is given in Section 3. The main result of this article, the consistency
of I.I.R., is established in Section 4, and we show how the algorithm can be stopped in
practice using a data splitting procedure. Most of the proofs are postponed to Section 5,
while related technical results are gathered in Section 6.

2 The I.I.R. procedure

For completeness, we recall the notations and some of the results presented in Guyader
et al. [15]. Denote by y = (y1, . . . , yn) the vector of observations corresponding to the
ordered sample x1 = X(1) < . . . < X(n) = xn. We implicitly assume in this writing that
the law µ of X has no atoms. Let us introduce the isotone cone C+

n :

C+
n = {u = (u1, . . . , un) ∈ R

n : u1 ≤ . . . ≤ un} .
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We denote by iso(y) (resp. anti(y)) the metric projection of y with respect to the Euclidean
norm onto the isotone cone C+

n (resp. C−
n = −C+

n ):

iso(y) = argmin
u∈C+

n

1

n

n∑

i=1

(yi − ui)
2 = argmin

u∈C+
n

‖y − u‖2n

anti(y) = argmin
b∈C−

n

1

n

n∑

i=1

(yi − bi)
2 = argmin

b∈C−
n

‖y − b‖2n.

The backfitting algorithm consists in updating each component by smoothing the partial
residuals, i.e., the residuals resulting from the current estimate in the other direction.
Thus, the Iterative Isotonic Regression algorithm goes like this:

Algorithm 1 Iterative Isotonic Regression (I.I.R.)

(1) Initialization: b̂
(0)
n =

(

b̂
(0)
1 [1], . . . , b̂

(0)
n [n]

)

= 0

(2) Cycle: for k ≥ 1

û
(k)
n = iso

(

y − b̂
(k−1)
n

)

b̂
(k)
n = anti

(

y − û
(k)
n

)

r̂
(k)
n = û

(k)
n + b̂

(k)
n .

(3) Iterate (2) until a stopping condition to be specified is achieved.

Guyader et al. [15] prove that the terms of the decomposition r̂
(k)
n = û

(k)
n + b̂

(k)
n have

singular Stieltjes measures. Furthermore, by starting with isotonic regression, the terms
û
(k)
n have all the same empirical mean as the original data y, while all the b̂

(k)
n are centered.

Hence, for each k, the decomposition r̂
(k)
n = û

(k)
n + b̂

(k)
n satisfies the discrete translation of

condition (3) so that it is unique (identifiable).

Algorithm 1 returns vectors of fitted values that we extend into piecewise constant func-
tions defined on the interval [0, 1]. Specifically, the vector û

(k)
n = (û

(k)
n [1], . . . , û

(k)
n [n]) is

associated to the real-valued function û
(k)
n defined on [0, 1] by

û(k)
n (x) = û(k)

n [1]1[0,X(2))(x) +

n−1∑

i=2

û(k)
n [i]1[X(i),X(i+1))(x) + û(k)

n [n]1[X(n),1](x). (5)

Observe that our definition of û
(k)
n (x) makes it right-continuous. Obviously, equivalent

formulations hold for b̂
(k)
n and r̂

(k)
n as well.

Figure 1 illustrates the application of I.I.R. on an example. The top left-hand side displays
the regression function r, and n = 100 points (xi, yi), with yi = r(xi) + εi, where the εi’s
are Gaussian centered random variables. The three other figures show the estimations
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r̂
(k)
n obtained on this sample for k = 1, 10, and 1, 000 iterations. According to (5), our
method fits a piecewise constant function. Moreover, increasing the number of iterations
tends to increase the number of jumps.
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Figure 1: Application of the I.I.R. algorithm for k = 1, 10, and 1, 000 iterations.

The bottom right figure illustrates that, as established in Guyader et al. [15], for fixed

sample size n, the function r̂
(k)
n (x) converges to an interpolant of the data when the

number of iterations k tends to infinity, i.e., for all i = 1, . . . , n,

lim
k→∞

r̂(k)n (xi) = yi.

One interpretation of the above result is that increasing the number of iterations leads to
overfitting. Thus, iterating the procedure until convergence is not desirable. On the other
hand, as illustrated on Figure 1, iterations beyond the first step typically improve the fit.
This suggests that the bias-variance trade-off is governed by the number of iterations and
we need to couple the I.I.R. algorithm with a stopping rule. This will be discussed at the
end of Section 4.

3 Isotonic regression: a general result of consistency

In this section, we focus on the first half step of the algorithm, which consists in applying
isotonic regression to the original data. To simplify the notations, we omit in this section
the exponent related to the number of iterations k, and simply denote ûn the isotonic
regression on the data, that is,

ûn = argmin
u∈C+

n

‖y − u‖n = argmin
u∈C+

n

1

n

n∑

i=1

(yi − ui)
2 .
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Let u+ denote the closest non-decreasing function to the regression function r with respect
to the L2(µ) norm. Thus, u+ is defined as

u+ = argmin
u∈C+

‖r − u‖ = argmin
u∈C+

∫

[0,1]

(r(x)− u(x))2µ(dx),

where C+ denotes the cone of non-decreasing functions in L2(µ). Since C+ is closed and
convex, the metric projection u+ exists and is unique in L2(µ).

For mathematical purpose, we also introduce un, the result from applying isotonic regres-
sion to the sample (xi, r(xi)), i = 1, . . . , n, that is

un = argmin
u∈C+

n

‖r − u‖n = argmin
u∈C+

n

1

n

n∑

i=1

(r(xi)− ui)
2 . (6)

Finally, we note that, since r is bounded (say, by a constant denoted C in all what follows)
so are u+ and un, independently of the sample size n (see for example Lemma 2 in Anevski
and Soulier [1]). Figure 2 displays the three terms involved.
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Figure 2: Isotonic regression on a non-monotone regression function.

The main result of this section states that, under a mild assumption on the noise ε,

E
[
‖ûn − u+‖2

]
−→
n→∞

0,

where the expectation is taken with respect to the sample Dn. Our analysis decomposes
‖ûn − u+‖ into two distinct terms, namely:

‖ûn − u+‖ ≤ ‖ûn − un‖+ ‖un − u+‖.
As ‖un−u+‖ does not depend on the response variable Yi, one could interpret it as a bias
term, whereas ‖ûn − un‖ plays the role of a variance term.

Throughout this section, our results are stated for both the empirical norm ‖.‖n and the
L2(µ) norm ‖.‖, as both are informative. The following proposition states the convergence
of the bias term (its proof is postponed to Section 5.1).
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Proposition 1 With the previous notations, we have

lim
n→∞

‖un − u+‖n = 0 a.s.,

and
lim
n→∞

‖un − u+‖ = 0 a.s.

Applying Lebesgue’s dominated convergence Theorem ensures that both

lim
n→∞

E
[
‖un − u+‖2n

]
= 0 and lim

n→∞
E
[
‖un − u+‖2

]
= 0.

Analysis of the variance term requires assumptions on the noise ε. More precisely, we will
make two types of hypothesis. More details about sub-Gaussian random variables may
be found for example in Chapter 1 of Buldygin and Kozachenko [10].

Assumption [A] The random variable ε satisfies E[ε] = 0 and E[ε2] = σ2.
Assumption [B] The random variable ε is centered and sub-Gaussian, i.e., there exists
a number a ∈ [0,∞) such that the inequality

E[exp(tε)] ≤ exp

{
a2t2

2

}

holds for all t ∈ R.

The proof of the following result is given in Section 5.2.

Proposition 2 Under Assumption [A], we have

lim
n→∞

E
[
‖ûn − un‖2n

]
= 0.

Under Assumption [B], we have

lim
n→∞

E
[
‖ûn − un‖2

]
= 0.

Combining Proposition 1 and Proposition 2 yields the following theorem. This result
generalizes the consistency of isotonic regression when applied in a more general context
than the one of monotone functions.

Theorem 1 Consider the model Y = r(X) + ε, with r : [0, 1] → R a bounded function
belonging to L2(µ), where µ is a non-atomic distribution on [0, 1]. Denote u+ and ûn

the functions resulting from the isotonic regression applied on r and on the sample Dn,
respectively. Then, under Assumption [A], we have

E
[
‖ûn − u+‖2n

]
→ 0,

when the sample size n tends to infinity. Under Assumption [B], we have

E
[
‖ûn − u+‖2

]
→ 0,

when the sample size n tends to infinity.

This result will be of constant use when iterating our algorithm. This is the topic of the
upcoming section.
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4 Consistency of iterative isotonic regression

We now proceed with our main result, which states that there exists a sequence of numbers
of iterations (kn), increasing with the sample size n, such that

E
[
‖r̂(kn)n − r‖2

]
−→
n→∞

0.

In order to control the expectation of the L2 distance between the estimator r̂
(k)
n and

the regression function r, we shall split ‖r̂(k)n − r‖ as follows: let r(k) be the result from
applying the algorithm on the regression function r itself k times, that is r(k) = u(k)+b(k),
where

u(k) = argmin
u∈C+

‖r − b(k−1) − u‖ and b(k) = argmin
b∈C−

‖r − u(k) − b‖.

We then upper-bound

‖r̂(k)n − r‖ ≤ ‖r(k) − r‖+ ‖r̂(k)n − r(k)‖. (7)

In this decomposition, the first term is an approximation error, while the second one
corresponds to an estimation error.

Figure 3 displays the function r(k) for two particular values of k. One can see that,
after k steps of the algorithm, there generally remains an approximation error ‖r(k) − r‖.
Nonetheless, one also observes that this error decreases when iterating the algorithm.
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Figure 3: Decreasing of the approximation error ‖r(k) − r‖ with k.

The following proposition states that the approximation error can indeed be controlled
by increasing the number of iterations k. Its proof relies on the interpretation of I.I.R. as
a von Neumann’s algorithm.

Proposition 3 Assume that r is a right-continuous function of bounded variation and µ
a non-atomic law on [0, 1]. Then the approximation term ‖r(k) − r‖ tends to 0 when the
number of iterations grows:

lim
k→∞

‖r(k) − r‖ = 0,

where ‖.‖ denotes the quadratic norm in L2(µ).
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Von Neumann’s algorithm originally solved the problem of finding the projection of a
given point onto the intersection of two closed subspaces. Since then, many related meth-
ods have extended the primary idea to the case of closed convex sets in Hilbert spaces
(see Deutsch [11], Bauschke and Borwein [4] and references therein for further details).

Figure 4 provides a very simple interpretation of the I.I.R algorithm in terms of von
Neumann sequences: namely, it illustrates that the sequences of functions u(k) and r−b(k)

might be seen as alternate projections onto the cone C+ and the translated cone r+C+ =
{r+u, u ∈ C+} respectively. This geometric interpretation and its application to establish
Proposition 3 are justified in Section 5.3.

r

r − b(1)

r − b(2)

r − u(1)

r − u(2)

b(1)

b(2)
u(1)

u(2)

r − b(k)

u(k)

C+

r + C+

C−

Figure 4: Interpretation of I.I.R. as a von Neumann’s algorithm.

Coming back to (7), we further decompose the estimation error into a bias and a variance
term to obtain

‖r̂(k)n − r‖ ≤ ‖r̂(k)n − r(k)‖
︸ ︷︷ ︸

+ ‖r(k) − r‖
︸ ︷︷ ︸

.

Estimation Approximation
≤

︷ ︸︸ ︷

‖r̂(k)n − r
(k)
n ‖ + ‖r(k)n − r(k)‖

↓ ↓
Variance + Bias

The function r
(k)
n results from k iterations of the algorithm on the sample (xi, r(xi)),

i = 1, . . . , n, and can be seen as the equivalent of the function un defined in (6). This
decomposition allows us to make use of the consistency results of the previous section,
and to control the estimation error when the sample size n goes to infinity. We now state
the main theorem of this paper, whose proof is detailed in Section 5.4.

Theorem 2 Consider the model Y = r(X)+ ε, where r : [0, 1] → R is a right-continuous
function of bounded variation, µ a non-atomic distribution on [0, 1], and ε a centered and
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sub-Gaussian random variable. Then there exists a sequence of numbers of iterations (kn)
such that, for any n, kn ≤ n and

E
[
‖r̂(kn)n − r‖2

]
−→
n→∞

0,

where ‖.‖ denotes the quadratic norm in L2(µ).

In the remainder of this section, we present a data-dependent way for choosing the number
of iterations kn and show that, for bounded Y , this procedure is consistent. To this end,
we split the sample Dn = {(X1, Y1), . . . , (Xn, Yn)} in two parts, denoted by Dℓ

n (learning
set) and Dt

n (testing set), of size ⌊n/2⌋ and n− ⌊n/2⌋, respectively. The first half is used
to construct the I.I.R. estimate

r̂
(k)
⌊n/2⌋(x,Dℓ

n)

for each k ∈ K = {1, . . . , ⌊n/2⌋}. The second half is used to choose k by picking k̂n ∈ K
to minimize the empirical risk on the testing set, that is

k̂n = argmin
k∈K

1

n− ⌊n/2⌋

n∑

i=⌊n/2⌋+1

(

Yi − r̂
(k)
⌊n/2⌋(Xi,Dℓ

n)
)2

.

Define the estimate
r̂(k̂n)n (x) = r̂

(k̂n)
⌊n/2⌋(x,Dℓ

n),

and note that r̂
(k̂n)
n depends on the entire data Dn. The following theorem ensures the

consistency of this method, provided that Y is assumed bounded. The proof is detailed
in Section 5.5.

Theorem 3 Suppose that |Y | ≤ L almost surely, and let r̂
(k̂n)
n be the I.I.R. estimate with

k̂n ∈ K = {1, . . . , ⌊n/2⌋} chosen by data-splitting. Then

E[‖r̂(k̂n)n − r‖2] → 0,

when n goes to infinity.

To conclude this section, let us notice that the choice of a stopping criterion as a model
selection also suggests stopping rules based, for example, on Akaike Information Criterion,
Bayesian Information Criterion or Generalized Cross Validation. These criteria can be
written in the generic form

argmin
p

{

log
1

n
RSS(p) + φ(p)

}

, (8)

where RSS denotes the residual sum of squares and φ is an increasing function. The
parameter p stands for the number (or equivalent number) of parameters. For isotonic
regression, we refer to Meyer and Woodroofe [26] to consider that the number of jumps
provides the effective dimension of the model. Therefore, a natural extension for I.I.R. is
to replace p by the number of jumps of r̂

(k)
n in (8). The comparisons of these criteria and

the practical behavior of the I.I.R. procedure will be addressed elsewhere by the authors.
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5 Proofs

5.1 Proof of Proposition 1

For g and h two functions from [0, 1] to [−C,C], we denote ∆n(g−h) the random variable

∆n(g − h) = ‖g − h‖2n − ‖g − h‖2 = 1

n

n∑

i=1

{
(g(Xi)− h(Xi))

2 − E
[
(g(X)− h(X))2

]}
.

We first show that
‖r − un‖n → ‖r − u+‖ a.s. (9)

To this end, we proceed in two steps, proving in a first time that

lim sup ‖r − un‖n ≤ ‖r − u+‖ a.s., (10)

and in a second time that

lim inf ‖r − un‖n ≥ ‖r − u+‖ a.s. (11)

For the first inequality, let us denote

An =
{
|∆n(r − u+)| > n−1/3

}
=
{
|‖r − u+‖2n − ‖r − u+‖2| > n−1/3

}
.

By the definition of un, note that for all n,

‖r − un‖n ≤ ‖r − u+‖n,

so that on An,
‖r − un‖2n ≤ ‖r − u+‖2n ≤ ‖r − u+‖2 + n−1/3.

Consequently
Bn =

{
‖r − un‖2n ≤ ‖r − u+‖2 + n−1/3

}
⊃ An.

Therefore
P (lim inf Bn) ≥ P

(
lim inf An

)
= 1− P (lim supAn) .

Since |r(Xi)− u+(Xi)| ≤ 2C, Hoeffding’s inequality gives for all t > 0

P (|∆n(r − u+)| > t) ≤ 2 exp

(

− t2n

8C2

)

.

Taking t = n−1/3, we deduce that

P(An) = P
(
|∆n(r − u+)| > n−1/3

)
≤ 2 exp

(

−n1/3

8C2

)

.

By Borel-Cantelli Lemma, we conclude that P (lim supAn) = 0, and hence P (lim inf Bn) =
1. On the set lim inf Bn, we have

lim sup ‖r − un‖2n ≤ ‖r − u+‖2,

12



which proves Equation (10).

Conversely, we now establish Equation (11). By definition of u+, observe that for all n,

‖r − u+‖ ≤ ‖r − un‖.

Consider the sets

Cn =






sup

h∈C+
[0,1]

|∆n(r − h)| > n−1/4






and Dn =

{
‖r − un‖2n ≥ ‖r − u+‖2 − n−1/4

}
,

so that Cn ⊂ Dn, and by applying Lemma 1,

P (lim infDn) ≥ 1− P (lim supCn) = 1.

On the set lim infDn, one has

lim inf ‖r − un‖2n ≥ ‖r − u+‖2,

which proves (11). Combining Equations (10) and (11) leads to (9).

Next, using Lemma 1 again, we get

lim
n→∞

‖r − un‖n − ‖r − un‖ = 0 a.s.

Combined with (9), this leads to

‖r − un‖ → ‖r − u+‖ a.s. (12)

It remains to prove the almost sure convergence of un to u+. For this, it suffices to use
the parallelogram law. Indeed, noting mn = (un + u+)/2, we have

‖un − u+‖2 = 2
(
‖r − u+‖2 + ‖un − r‖2

)
− 4‖mn − r‖2.

Since both u+ and un belong to the convex set C+, so does mn. Hence ‖r − u+‖2 ≤
‖r −mn‖2, and

‖un − u+‖2 ≤ 2
(
‖un − r‖2 − ‖r − u+‖2

)
.

Combining this with (12), we conclude that

lim
n→∞

‖un − u+‖ = 0 a.s.

Finally, Lemma 1 guarantees the same result for the empirical norm, that is

lim
n→∞

‖un − u+‖n = 0 a.s.,

and the proof is complete.
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5.2 Proof of Proposition 2

Let us denote 〈·, ·〉n the inner product associated to the empirical norm ‖.‖n. Since
isotonic regression corresponds to the metric projection onto the closed convex cone C+

n

with respect to this empirical norm, the vectors ûn and un are characterized by the
following inequalities: for any vector u ∈ C+

n ,

〈y − ûn, u− ûn〉n ≤ 0 (13)

〈r − un, u− un〉n ≤ 0 (14)

Setting u = un in (13) and u = ûn in (14), we get

〈y − ûn, un − ûn〉n ≤ 0 and 〈r − un, ûn − un〉n ≤ 0.

Since ε = y − r, this leads to

‖ûn − un‖2n ≤ 〈ε, ûn − un〉n. (15)

Next, we have to use an approximation result, namely Lemma 3 in Section 6.2. The
underlying idea is to exploit the fact that any non-decreasing bounded sequence can be
approached by the element of a subspace H+

n at distance less than δn. Specifically, if Cn

is an upper-bound for the absolute value of the considered non-decreasing bounded se-
quences, we can construct such a subspace H+

n with dimension Nn where Nn = (8C2
n)/δ

2
n.

From now on, we will take Nn ≤ n.

Let us introduce the vectors ĥn and hn defined by

ĥn = inf
h∈H+

n

‖ûn − h‖n and hn = inf
h∈H+

n

‖un − h‖n,

so that
‖ûn − ĥn‖n ≤ δn and ‖un − hn‖n ≤ δn.

From this, we get

〈ε, ûn − un〉n =〈ε, ûn − ĥn〉n + 〈ε, ĥn − hn〉n + 〈ε, hn − un〉n

≤‖ĥn − hn‖n
〈

ε,
ĥn − hn

‖ĥn − hn‖n

〉

n

+ 2δn‖ε‖n

≤
{

‖ĥn − ûn‖n + ‖ûn − un‖n + ‖un − hn‖n
}

sup
v∈H+

n ,‖v‖n=1

〈ε, v〉n + 2δn‖ε‖n

≤{‖ûn − un‖n + 2δn} sup
v∈H+

n ,‖v‖n=1

〈ε, v〉n + 2δn‖ε‖n.

According to (15), we deduce

‖ûn − un‖2n ≤ {‖ûn − un‖n + 2δn} sup
v∈H+

n ,‖v‖n=1

〈ε, v〉n + 2δn‖ε‖n
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so that
‖ûn − un‖2n ≤ {‖ûn − un‖n + 2δn} ‖πH+

n
(ε)‖n + 2δn‖ε‖n,

where πH+
n
(ε) stands for the metric projection of ε onto H+

n . Put differently, we have

‖ûn − un‖2n ≤ ‖ûn − un‖n × ‖πH+
n
(ε)‖n + 2δn

{
‖πH+

n
(ε)‖n + ‖ε‖n

}
,

and taking the expectation on both sides leads to

E
[
‖ûn − un‖2n

]
≤ E

[
‖ûn − un‖n × ‖πH+

n
(ε)‖n

]
+ 2δn

{
E
[
‖πH+

n
(ε)‖n

]
+ E [‖ε‖n]

}
.

If we denote 





x =
√

E [‖ûn − un‖2n]
αn =

√

E
[
‖πH+

n
(ε)‖2n

]

βn = 2δn
{
E
[
‖πH+

n
(ε)‖n

]
+ E [‖ε‖n]

}

an application of Cauchy-Schwarz inequality gives

x2 − αnx− βn ≤ 0 ⇒ x ≤ αn +
√

α2
n + 4βn

2
,

which means that

E
[
‖ûn − un‖2n

]
≤
(

αn +
√

α2
n + 4βn

2

)2

.

Under Assumption [A], a straightforward computation shows that

E
[
‖πH+

n
(ε)‖2n

]
=

1

n
E
[
(πH+

n
ε)′(πH+

n
ε)
]
=

1

n
E
[
tr
(
(πH+

n
ε)′(πH+

n
ε)
)]

=
1

n
tr
(
E [εε′] πH+

n

)
,

and since H+
n has dimension Nn = (8C2

n)/δ
2
n, this gives

E
[
‖πH+

n
(ε)‖2n

]
= σ2Nn

n
⇒ αn = σ

√

Nn

n
= σ × 2

√
2Cn

δn
√
n

.

Set δn = n−α and Cn = nγ with α and γ strictly positive, it then follows that αn goes to
zero when n goes to infinity, provided that α + γ < 1/2. Moreover, Jensen’s inequality
implies

βn ≤ 2δn(αn + σ).

As both δn and αn tend to zero when n goes to infinity, we have proved the first part of
Proposition 2, that is

lim
n→∞

E
[
‖ûn − un‖2n

]
= 0.

For the second part of Proposition 2, introducing the random variable

∆n = ‖ûn − un‖2n − ‖ûn − un‖2,
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our goal is to show that E[∆n] goes to zero when n goes to infinity. For this, let us denote

Mn = sup
1≤i≤n

|Yi|,

and consider the decomposition

E[∆n] = E[∆n1Mn<Cn] + E[∆n1Mn≥Cn ],

where, as previously, Cn = nγ with 0 < γ < 1/2. Notice that, since ‖r‖∞ ≤ C < ∞, one
has ‖r‖∞ ≤ Cn for n large enough. Then, on the set {Mn ≥ Cn}, both ûn and un are
bounded by Mn. From the definition of ∆n, we deduce that, for n large enough,

E[∆n1Mn≥Cn ] ≤ 8E[M2
n1Mn≥Cn].

Recall that for any non negative random variable X ,

E[X ] =

∫ +∞

0

P (X ≥ t) dt,

whose application in our case gives

E[∆n1Mn≥Cn] ≤ 8C2
n P(Mn ≥ Cn) + 8

∫ +∞

C2
n

P

(

Mn ≥
√
t
)

dt.

Then, observing that
P(|Yi| ≥

√
t) ≤ P(|εi| ≥

√
t− C),

we get, from the fact that the εi’s are i.i.d.,

P

(

Mn ≥
√
t
)

≤ 1−
(

1− P(|ε| ≥
√
t− C)

)n

.

Since ε is sub-Gaussian (Assumption [B]), there exists τ > 0 such that

P(|ε| ≥
√
t− C) ≤ 2 exp

(

−(
√
t− C)2

2τ 2

)

,

for all t ≥ C2 (see Lemma 1.3 in [10]). Then the inequality (1 − x)n ≥ 1 − nx, valid for
any x small enough, leads to

P

(

Mn ≥
√
t
)

≤ 2n exp

(

−(
√
t− C)2

2τ 2

)

.

Thus, for n large enough and taking into account that Cn = nγ, we get

∫ +∞

C2
n

P

(

Mn ≥
√
t
)

dt ≤ 2n

∫ +∞

n2γ

exp

(

−(
√
t− C)2

2τ 2

)

dt,
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which goes to zero when n goes to infinity. In the same way, one has

C2
n P(Mn ≥ Cn) ≤ 2nC2

n exp

(

−(Cn − C)2

2τ 2

)

,

or, equivalently,

C2
n P(Mn ≥ Cn) ≤ 2n1+2γ exp

(

−(nγ − C)2

2τ 2

)

,

which goes to zero when n goes to infinity. Therefore, we get

E[∆n1Mn≥Cn ] → 0.

Next, we have

E[∆n1Mn<Cn] =

∫ +∞

0

P(∆n1Mn<Cn ≥ t)dt =

∫ +∞

0

P(∆n ≥ t,Mn < Cn)dt.

Again, if Mn < Cn, with n large enough so that Cn ≥ C, then both ûn and un are bounded
by Cn. As a consequence, from Lemma 2, we know that for any t > 0,

P(∆n ≥ t,Mn < Cn) ≤ exp

(

2

⌈
64C2

n

t

⌉

log n− t2n

32C2
n

)

.

Thus, setting

fn(t) = min

(

1, exp

(

2

⌈
64C2

n

t

⌉

log n− t2n

32C2
n

))

,

we have

E[∆n1Mn<Cn] ≤
∫ +∞

0

fn(t) dt.

Then, it remains to see that for n large enough and for all t ≥ 0, one has fn(t) ≤ f2(t).
Since for all t > 0 fixed, fn(t) goes to 0 when n tends to infinity, Lebesgue’s dominated
convergence Theorem ensures that

E[∆n1Mn<Cn ] → 0.

This terminates the proof of Proposition 2.

5.3 Proof of Proposition 3

Consider the translated cone

r + C+ = {r + u, u ∈ C+}.

As mentioned above, Figure 4 provides a very simple interpretation of the algorithm:
namely, it illustrates that the sequences of functions u(k) and r − b(k) might be seen as
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alternate projections onto the cones C+ and r + C+. In what follows, we justify this il-
luminating geometric interpretation in a rigorous way, and we explain its key role in the
proof of the convergence as k goes to infinity.

By definition, we have u(1) = PC+(r) where PC+ denotes the metric projection onto C+.
Classical properties of projections ensure that

Pr+C+(u(1)) = r + PC+(u(1) − r) = r − PC−(r − u(1)).

Coming back to the definition of b(1) = PC−(r − u(1)), we are led to

r − b(1) = Pr+C+(u(1)).

In the same manner, since u(2) = PC+(r − b(1)), we get

r − b(2) = r − PC−(r − u(2)) = r + PC+(r − u(2)) = Pr+C+(u(2)).

More generally, denoting b(0) = 0, this yields for all k ≥ 1 (see also Figure 4)

u(k) = PC+(r − b(k−1)) and r − b(k) = Pr+C+(u(k)).

It remains to invoke Theorem 4.8 in Bauschke and Borwein [5] to conclude that

(r − b(k))− u(k) = r − r(k) −−−→
k→∞

0,

which ends the proof of Proposition 3.

5.4 Proof of Theorem 2

Coming back to the original notation, Theorem 1 states that

lim
n→∞

E
[
‖û(1)

n − u(1)‖2n
]
= 0 and lim

n→∞
E
[
‖û(1)

n − u(1)‖2
]
= 0. (16)

In the following, we show that this result still holds when applying the backfitting algo-
rithm.

We first describe the end of the first step by showing that E
[

‖b̂(1)n − b(1)‖2
]

→ 0.

Recall the definitions

b(1) = argmin
b∈C−

‖r − u(1) − b‖ and b̂(1)n = argmin
b∈C−

n

‖y − û(1)
n − b‖n.

In order to mimic the previous step, let us consider the vectors

ỹ = y − u(1) and b̃(1)n = argmin
b∈C−

n

‖ỹ − b‖n,
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so that
ỹ =

(
r − u(1)

)
+ ε

and
b̃(1)n = argmin

b∈C−
n

‖(r − u(1)) + ε− b‖n.

To study the term ‖b̃(1)n − b(1)‖, one can apply mutatis mutandis the result of Theorem 1,

replacing û
(1)
n by b̃

(1)
n , r by r−u(1), and isotonic regression by antitonic regression. Hence,

lim
n→∞

E

[

‖b̃(1)n − b(1)‖2n
]

= 0 and lim
n→∞

E

[

‖b̃(1)n − b(1)‖2
]

= 0. (17)

As projection reduces distances, we also have

‖b̂(1)n − b̃(1)n ‖n ≤ ‖y − û(1)
n − ỹ‖n = ‖û(1)

n − u(1)‖n.

Thanks to equations (16) and (17), we deduce

E

[

‖b̂(1)n − b(1)‖2n
]

≤ 2×
{

E

[

‖b̂(1)n − b̃(1)n ‖2n
]

+ E

[

‖b̃(1)n − b(1)‖2n
]}

→ 0.

Invoking the same arguments as those at the end of the proof of Proposition 2, we also
have

lim
n→∞

E

[

‖b̂(1)n − b(1)‖2
]

= 0.

Finally, at the end of the first iteration, we have

E
[
‖r̂(1)n − r(1)‖2

]
≤ 2×

{

E
[
‖û(1)

n − u(1)‖2
]
+ E

[

‖b̂(1)n − b(1)‖2
]}

→ 0.

For the beginning of the second iteration, consider this time

û(2)
n = argmin

u∈C+
n

‖y − b̂(1)n − u‖n and u(2) = argmin
u∈C+

‖r − b(1) − u‖.

Let us introduce

ỹ = y−b(1) = (r−b(1))+ε and ũ(2)
n = argmin

u∈C+
n

‖ỹ−u‖n = argmin
u∈C+

n

‖(r−b(1))+ε−u‖n.

We apply Theorem 1 again, replacing r by r − b(1), and û
(1)
n by ũ

(2)
n . This leads to

lim
n→0

E
[
‖ũ(2)

n − u(2)‖2n
]
= 0.

Thanks to the reduction property of isotonic regression and using the conclusion of the
first iteration, we get

E
[
‖û(2)

n − ũ(2)
n ‖2n

]
≤ E

[

‖y − b̂(1)n − ((r − b(1)) + ε)‖2n
]

= E

[

‖b̂(1)n − b(1)‖2n
]

→ 0.
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Therefore

E
[
‖û(2)

n − u(2)‖2n
]
≤ 2×

{
E
[
‖û(2)

n − ũ(2)
n ‖2n

]
+ E

[
‖ũ(2)

n − u(2)‖2n
]}

→ 0,

and, as before, we also have

lim
n→∞

E
[
‖û(2)

n − u(2)‖2
]
= 0.

The same scheme leads to limn→∞ E

[

‖b̂(2)n − b(2)‖2
]

= 0, so that

E
[
‖r̂(2)n − r(2)‖2

]
≤ 2×

{

E
[
‖û(2)

n − u(2)‖2
]
+ E

[

‖b̂(2)n − b(2)‖2
]}

→ 0.

By iterating this process, it is readily seen that, for all k ≥ 1,

lim
n→∞

E
[
‖r̂(k)n − r(k)‖2

]
= 0,

which means that, at each iteration, the estimation error goes to 0 when the sample size
tends to infinity.

We deduce that we can construct an increasing sequence (nk) such that for each k ≥ 1
and for all n ≥ nk

E
[
‖r̂(k)n − r(k)‖

]
≤ ‖r(k) − r‖+ 1

k
.

Notice that the term ‖r(k) − r‖ might be equal to zero (e.g., r(1) = r if r is monotone),
hence the additive term 1/k in the previous inequality. Consequently,

E
[
‖r̂(k)n − r‖

]
≤ 2‖r(k) − r‖+ 1

k
.

Then let us consider the sequence (kn) defined as: kn = 0 if n < n1, kn = 1 if n1 ≤ n < n2,
and so on. Obviously, one has kn ≤ n for any n, (kn) tends to infinity, and

E
[
‖r̂(kn)n − r‖

]
≤ 2‖r(kn) − r‖+ 1

kn
−−−→
n→∞

0.

This ends the proof of Theorem 2.

5.5 Proof of Theorem 3

If |Y | ≤ L < ∞ almost surely, the adaptation of Theorem 7.1 in Györfi et al. [16] to our
setting reveals that, for any δ > 0,

E[r̂(k̂n)n (X)− r(X)]2 ≤ (1 + δ) inf
k∈K

E[r̂
(k)
⌊n/2⌋(X,Dℓ

n)− r(X)]2 + c
1 + ln⌊n/2⌋
n− ⌊n/2⌋ , (18)
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for some positive constant c depending only on L and δ. Next, Theorem 2 says that there
exists a sequence of numbers of iterations (k⌊n/2⌋) such that k⌊n/2⌋ ≤ ⌊n/2⌋ for any n, and

E

[

r̂
(k⌊n/2⌋)

⌊n/2⌋ (X,Dℓ
n)− r(X)

]2

−→
n→∞

0.

Coming back to (18), this ensures that

inf
k∈K

E[r̂
(k)
⌊n/2⌋(X,Dℓ

n)− r(X)]2 ≤ E

[

r̂
(k⌊n/2⌋)

⌊n/2⌋ (X,Dℓ
n)− r(X)

]2

−→
n→∞

0.

For the second term of (18), one has clearly

1 + ln⌊n/2⌋
n− ⌊n/2⌋ −→

n→∞
0,

and the proof is complete.

6 Technical results

6.1 Concentration inequalities

Throughout the previous proofs, we repeatedly needed to pass from the empirical norm
‖.‖n to the L2(µ) norm ‖.‖. This was made possible thanks to several exponential in-
equalities that we justify in this section.

Specifically, let g and h denote two mappings from I = [0, 1] to [−C,C], and consider the
random variable

∆n(g − h) =
1

n

n∑

i=1

{
(g(Xi)− h(Xi))

2 − E
[
(g(X)− h(X))2

]}
= ‖g − h‖2n − ‖g − h‖2.

In what follows, we focus on the concentration of ∆n(g−h) around zero. First note that,
since |g(Xi)− h(Xi)| ≤ 2C, Hoeffding’s inequality gives for all t > 0

P (|∆n(g − h)| > t) ≤ 2 exp

(

− t2n

8C2

)

. (19)

The following lemma goes one step further, by considering, for fixed g, the tail distribution
of

sup
h∈C+

[0,1]

|∆n(g − h)|.

For obvious reasons, this type of result is sometimes called a maximal inequality. The
proof shares elements with the one of Theorem 3.1 of van de Geer and Wegkamp [30].
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Lemma 1 Let g be a function from [0, 1] to [−C,C] and let C+
[0,1] denote the set of non-

decreasing functions from [0, 1] to [−C,C]. For any α ∈ (0, 1/3), there exist positive real
numbers c1 and c2 depending only on α and C and such that

P



 sup
h∈C+

[0,1]

|∆n(g − h)| > n−α



 ≤ c1 exp
(
−c2n

1−2α
)
.

Proof. The first step consists in showing that the mapping h 7→ ∆n(g − h) is Lipschitz.
For any pair of functions h and h̃, we have

∆n(g − h)−∆n(g − h̃) =
1

n

n∑

i=1

{

2g(Xi)− h(Xi)− h̃(Xi)
}(

h̃(Xi)− h(Xi)
)

− E

[{

2g(X)− h(X)− h̃(X)
}(

h̃(X)− h(X)
)]

.

Since h and h̃ take values in [−C,C], we get

|∆n(g − h)−∆n(g − h̃)| ≤ 4C ×
{

1

n

n∑

i=1

|h(Xi)− h̃(Xi)|+ E

[

|h(X)− h̃(X)|
]
}

,

and according to Jensen’s inequality,

|∆n(g − h)−∆n(g − h̃)| ≤ 4C ×
{

‖h− h̃‖n + ‖h− h̃‖
}

.

Now, since ‖h − h̃‖ = E

[

‖h− h̃‖n
]

, if the inequality ‖h − h̃‖n ≤ δ is satisfied, we also

have ‖h− h̃‖ ≤ δ. Thus,

∀δ > 0, ‖h− h̃‖n ≤ δ ⇒ |∆n(g − h)−∆n(g − h̃)| ≤ 8Cδ

and the mapping h 7→ ∆n(g − h) is Lipschitz for the empirical norm ‖ · ‖n.

Next, let us consider a δ-covering E∗ = {e∗j , j = 1, · · · ,M} of C+
[0,1] for the empirical

norm ‖.‖n. We stress that this set E∗ is random since it depends on the points Xi, but its
cardinality M may be chosen deterministic and upper-bounded as follows (see for example
the proof of Lemma 2.2 in van de Geer [31]): denoting N =

⌈
2C
δ

⌉
, where ⌈⌉ stands for the

ceiling function, we have

M =

(
n+N

N

)

≤ nN , (20)

where the last inequality is satisfied for any integer n ≥ 2 as soon as N ≥ 3.

Then, for any h in C+
[0,1], there exists e

∗ in E∗ such that ‖h− e∗‖n ≤ δ. From the previous
Lipschitz property, we know that

|∆n(g − h)−∆n(g − e∗)| ≤ 8Cδ.
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Letting t > 0 and δ = t/(16C), our objective is to upper bound

P



 sup
h∈C+

[0,1]

|∆n(g − h)| > t



 .

In this aim, for any h in C+
[0,1] and any e∗ in E∗, we start with the decomposition

|∆n(g − h)| ≤ |∆n(g − h)−∆n(g − e∗)|+ |∆n(g − e∗)|.

For any h such that |∆n(g − h)| > t, since there exists e∗ in E∗ such that

|∆n(g − h)−∆n(g − e∗)| ≤ t/2,

we necessarily have |∆n(g − e∗)| > t/2, and consequently

P (|∆n(g − h)| > t) ≤ P

(

max
j=1···M

|∆n(g − e∗j )| > t/2

)

.

In other words,

P



 sup
h∈C+

[0,1]

|∆n(g − h)| > t



 ≤ P

(

max
j=1···M

|∆n(g − e∗j)| > t/2

)

≤ P

(
M⋃

j=1

|∆n(g − e∗j)| > t/2

)

≤
M∑

j=1

P
(
|∆n(g − e∗j )| > t/2

)
.

According to (19) and to the fact that

M ≤ nN = n⌈ 2C
δ ⌉,

fixing δ = t/(16C) leads to

P



 sup
h∈C+

[0,1]

|∆n(g − h)| > t



 ≤ 2M exp

(

− t2n

8C2

)

≤ 2 exp

(⌈
32C2

t

⌉

logn− t2n

32C2

)

.

Finally, for any α ∈ (0, 1/3), there exists c2 = c2(α) such that for any integer n,
⌈
32C2

n−α

⌉

log n− n−2αn

32C2
≤ −c2n

1−2α,

hence the desired result. ✷

The last concentration inequality is a generalization of the previous one: this time, neither
g nor h are assumed fixed.

23



Lemma 2 Denoting C+
[0,1] the set of non decreasing mappings from [0, 1] to [−C,C], we

have for all t > 0

P



 sup
h1∈C

+
[0,1]

,h2∈C
+
[0,1]

|∆n(h1 − h2)| > t



 ≤ exp

(

2

⌈
64C2

t

⌉

log n− t2n

32C2

)

.

Proof. With the same notations as before, just note that for any mapping h1 ∈ C+
[0,1]

(respectively h2), there exists h∗
1 (respectively h∗

2) in the δ-covering E∗ of C+
[0,1], such that

‖h1 − h∗
1‖n ≤ δ and ‖h2 − h∗

2‖n ≤ δ.

Following the same line as in the proof of Lemma 1, we have that, for any mapping g
with values in [−C,C],

|∆n(g − h1)−∆n(g − h∗
1)| ≤ 8Cδ and |∆n(g − h2)−∆n(g − h∗

2)| ≤ 8Cδ.

In particular

|∆n(h2 − h1)−∆n(h2 − h∗
1)| ≤ 8Cδ and |∆n(h

∗
1 − h2)−∆n(h

∗
1 − h∗

2)| ≤ 8Cδ.

Moreover,

|∆n(h1 − h2)| ≤ |∆n(h2 − h1)−∆n(h2 − h∗
1)|+ |∆n(h2 − h∗

1)|.

Set δ = t/(32C), then

|∆n(h1 − h2)| > t ⇒ |∆n(h2 − h∗
1)| > 3t/4.

In the same manner,

|∆n(h2 − h∗
1)| ≤ |∆n(h

∗
1 − h2)−∆n(h

∗
1 − h∗

2)|+ |∆n(h
∗
1 − h∗

2)|,

and
|∆n(h2 − h∗

1)| > 3t/4 ⇒ |∆n(h
∗
1 − h∗

2)| > t/2.

Hence, for any h1 and h2 in C+
[0,1],

P (|∆n(h1 − h2)| > t) ≤ P

(

max
h∗
1,h

∗
2∈E

∗
|∆n(h

∗
1 − h∗

2)| > t/2

)

.

As a consequence, the choice δ = t/(32C) gives

P



 sup
h1∈C

+
[0,1]

,h2∈C
+
[0,1]

|∆n(h1 − h2)| > t



 ≤ P

(

max
h∗
1,h

∗
2∈E

∗
|∆n(h

∗
j − h∗

j′)| > t/2

)

≤
∑

1≤j1 6=j2≤M

P
(
|∆n(e

∗
j − e∗j′)| > t/2

)

≤ M2 exp

(

− t2n

32C2

)

.
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According to (20), we are led to

P



 sup
h1∈C

+
[0,1]

,h2∈C
+
[0,1]

|∆n(h1 − h2)| > t



 ≤ exp

(

2

⌈
64C2

t

⌉

log n− t2n

32C2

)

.

✷

Note that for any α ∈ (0, 1/3), there exists c2 = c2(α) > 0 such that for any integer n

2

⌈
64C2

n−α

⌉

logn− n−2αn

32C2
≤ −c2n

1−2α.

Thus, for any α ∈ (0, 1/3), the following concentration inequality holds

P



 sup
h1∈C

+
[0,1]

,h2∈C
+
[0,1]

|∆n(h1 − h2)| > n−α



 ≤ exp
(
−c2n

1−2α
)
.

6.2 An approximation result

Consider the subset C+
n,C of C+

n consisting in all vectors whose absolute values of the
components are bounded by a real number C. Consider N ∈ N such that N ≤ n. For
each j = 0, . . . , N−1, let us introduce the vector h+

j =
(
h+
j [1], · · · , h+

j [n]
)′
of Rn as follows

h+
j [i] =

{
0 if i ≤ ⌊ jn

N
⌋

1 otherwise

and define
H+ = Vect(h+

0 , · · · , h+
N−1).

Finally, set δ = 2
√
2C/

√
N ≥ 2

√
2C/

√
n.

Lemma 3 With the previous notations, we have for all f in C+
n,C,

inf
h∈H+

‖f − h‖n ≤ δ.

Proof. We denote f = (f [1], . . . , f [n])′, with

−C ≤ f [1] ≤ · · · ≤ f [n] ≤ C.

Set αN = f [n] and, for j = 0, . . . , N − 1,

αj = min
i:h+

j [i]=1
f [i].

We define also the vectors f− and f+ of H+ as follows

f− = α0h
+
0 +

N−1∑

j=1

(αj − αj−1)h
+
j ,
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and

f+ = α1h
+
0 +

N−1∑

j=1

(αj+1 − αj)h
+
j .

Observe that f− ≤ f ≤ f+, therefore

‖f − f−‖2n ≤ ‖f+ − f−‖2n

with

f+ − f− =

N−1∑

j=1

(αj − αj−1)(h
+
j−1 − h+

j ) + (αN − αN−1)h
+
N−1. (21)

Remark that, for all j = 1, . . . , N − 1,

‖h+
j−1 − h+

j ‖2n ≤ 1

n

(

⌊jn
N

⌋ − ⌊(j − 1)n

N
⌋
)

≤ 1

n

( n

N
+ 1
)

≤ 2

N
,

and ‖h+
N−1‖2n ≤ 2/N as well. Thus, taking into account that the decomposition (21) is

orthogonal, we get

‖f+ − f−‖2n ≤ 2

N

N∑

j=1

(αj − αj−1)
2 =

8C2

N

N∑

j=1

(
αj − αj−1

2C

)2

.

Since 0 ≤ (αj − αj−1)/(2C) ≤ 1 and 0 ≤ (αN − α1)/2C ≤ 1, we are led to

‖f+ − f−‖2n ≤ 8C2

N

N∑

j=1

αj − αj−1

2C
≤ 8C2

N
.

Considering that δ2 = 8C2/N , we finally get the desired result, that is

inf
h∈H+

‖f − h‖2n ≤ δ2.

✷

For the subset C−
n,C of C−

n , we proceed in the same way. We conclude that there exists a

vector space H− with dimension N = 8C2/δ2 such that, for all f in C−
n,C ,

inf
h∈H−

‖f − h‖n ≤ δ.
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