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Hypotheses testing theory for concrete problems

A theory in response to concrete challenges in various fields

Laser vibrometry
Public statistics
Genetics
Neuroscience
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Single tests of single null hypotheses

Observed random variable: X, defined on (Ω,A,P), with distribution P .

Possible set of distributions for X defined from a nonparametric model: P.

Single null hypothesis defined through P0 ⊂ P as (H0) P ∈ P0.

Alternative hypothesis (H1) P ∈ P \ P0.

A (single) nonrandomized test of (H0) against (H1) is a statistic φ
depending on X:

with value 1 when X leads to reject (H0) in favor of (H1),
with value 0 otherwise.
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Single tests of single null hypotheses
Nonasymptotic minimax testing

First kind error requirement (Neyman-Pearson): given α in (0, 1),
supP∈P0P(φ = 1) := P(H0 ) (φ = 1) ≤ α (level α test).

Second kind error requirement: given β in (0, 1),
supP∈P1P(φ = 0) ≤ β, with P1 ⊂ P \ P0 as large as possible.

8 In general, if α + β < 1, P1 can not be equal to P \ P0!
ß P1 = {P ∈ P ′, d(P,P0) ≥ r}, with r as small as possible,

for some distance d on P, and (realistic ?) restricted class of probability
distributions P ′ ⊂ P.

Let φα be a level α test of (H0) against (H1).
The uniform separation rate of φα over P ′ is defined as

SRβ
d (φα,P ′ ) = inf

{
r > 0, supP∈P ′,d(P,P0)≥r P(φα = 0) ≤ β

}
.
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•P0

P ′
•
−1− α

supP∈P ′,d(P,P0)≥r P(φα = 0)

r
0
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Single tests of single null hypotheses
Nonasymptotic minimax testing

A second kind error related criterion which allows to:

Compare two level α tests
See whether a level α test is optimal over P ′,
in the following minimax sense.

The minimax separation rate over P ′ is defined by
mSRα,β

d (P ′ ) = inf{φα of level α} SRβ
d (φα,P ′ ) .

A level α test φα is minimax over P ′, if
SRβ

d (φα,P ′ ) ≤ C (α, β) mSRα,β
d (P ′ ).

ß Parallel between the minimax hypothesis testing theory and
the minimax estimation theory
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Single tests of single null hypotheses
Nonasymptotic minimax testing: example in the density model

Density model X = (X1, . . . ,Xn) is a sample of n i.i.d. random
variables with distribution Pf of density f with re-
spect to the Lebesgue measure λ on X = R,
P = {Pf , f ∈ L2(R, λ)}.

Goodness-of-fit test: given a density f0 ∈ L2(R, λ),

(H0 ) f = f0 ⇔ Pf ∈ P0 = {Pf0} against (H1 ) f 6= f0 ⇔ Pf 6∈ P0 = {Pf0}

Minimax separation rate: d2(Pf ,Pg ) = ‖f − g‖2, Bs,∞,∞(R) Hölder ball,

mSRα,β
d2

({Pf , f ∈ Bs,∞,∞(R)}) ≈ n−2s/(4s+1)

/ Ingster (1993), Pouet (2002)
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Single tests of single null hypotheses
Nonasymptotic minimax testing: example in the density model

Sm = 〈bm,k , k ∈ Z〉, with bm,k =
√
m1[k/m,(k+1)/m) for m ∈ N\{0},

ΠSm orthogonal projection onto Sm w.r.t. 〈., .〉2
(H0,m) Pf ∈ P0,m, with P0,m = {Pf , ΠSm(f − f0) = 0} ⊃ P0.

Single test: φm,α = 1{Tm>F−1m (1−α)}, with
Tm = 1

n(n−1)

∑
k∈Z

∑n
i 6=j=1 bm,k(Xi )bm,k(Xj) + ‖f0‖22 −

2
n

∑n
i=1 f0(Xi )

estimating ‖ΠSm(f − f0)‖22, Fm = c.d.f. of Tm under (H0)

φm,α is a level α test such that Pf (φm,α = 0) ≤ β as soon as

d2
2 (Pf ,P0) > (1 + ε)

{
‖f − ΠSm(f )‖22 + C

(√
m ln(1/α)

n + m
n2

)}
.

/ Fromont, Laurent, Ann. Stat. (2006)

Tools: concentration inequalities (U statistics of order 2, linear statistics)
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Single tests of single null hypotheses
Nonasymptotic minimax testing: example in the density model

Bias term: for s ∈ (0, 1], f ∈ Bs,∞,∞(R)⇒ ‖f − ΠSm(f )‖2 ≤ C (s)R2m−2s

Minimax test: Take m such that R2m−2s '
√
m/n⇔ m ' (R2n)2/(4s+1).

For n large,
SRβ

d2
(φm,α, {Pf , f ∈ Bs,∞,∞(R) ∩ L∞(R ′)}) ≤ C (s, α, β,R ′)R

1
4s+1 n

−2s
4s+1 .

8 Problem: the test depends on s! A priori realistic choice of Bs,∞,∞(R) ?

ß Test which does not depend on s but which is minimax or nearly minimax
over the class {Pf , f ∈ Bs,∞,∞(R) ∩ L∞(R ′)} for every s?

A level α test φα is minimax adaptive over a collection of classes P ′, if it
is minimax or nearly minimax over all the classes P ′ in the collection.

ß Aggregation of tests
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Aggregated tests

Collection of subsets of P: {P0,m, m ∈M}, P0 ⊂ ∩m∈MP0,m
Collection of hypotheses: {(H0,m ) , m ∈M}, (H0,m )P ∈ P0,m
Collection of tests: Φα =

{
φm,α = 1{Tm>qm(1−α)}, m ∈M

}
with supP∈P0 P(φm,α = 1) ≤ α
Collection of individual levels: Uα = {um,α, m ∈M}

The aggregated test based on the collections Φα and Uα is defined as

Φ̄α = sup
m∈M

φm,um,α = sup
m∈M

1{Tm>qm(1−um,α)}.

ß Reject (H0) if at least one (H0,m ) is rejected with φm,um,α
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Aggregated tests

Two concerns: level control + minimax adaptivity

Minimax adaptivity: choice of Tm (minimax single tests)
Level control: choice of qm(1− um,α)

Four different cases can be distinguished (Z is a statistic depending on X).

Notation: L(H0)(T ) = distribution of T given Z ,
L(H0)(T |Z ) = conditional distribution of T given Z under (H0),
L(T |Z ) = conditional distribution of T given Z�

�

�



[KD] (Known Distr.) L(H0)(Tm) is known (parameter free)

[UD1] L(H0)(Tm|Z ) is known
Ú

[UD] (Unknown Distr.) Ù [UD2] ∃T ∗m, L(T ∗m|Z ) = L(H0)(Tm|Z )
Ø

[UD3] ∃T ∗m, L(H0)(T ∗m|Z ) = L(H0)(Tm|Z )
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Aggregated tests: goodness-of-fit
In the density model ([KD])

Sm = 〈bm,k , k ∈ Z〉, with bm,k =
√
m1[k/m,(k+1)/m) for m ∈ N\{0}

Collection of subsets of P: {P0,m = {Pf , ΠSm(f − f0) = 0}, m ∈M}
Collection of hypotheses: {(H0,m ) Pf ∈ P0,m, m ∈M}
Collection of tests:

{
φm,α = 1{Tm>F−1m (1−α)},m ∈M

}
,

Collection of individual levels: {um,α, m ∈M} ?

Bonferroni choice: um,α = α/#M

Φ̄Bonf
α = supm∈M φm,α/#M = supm∈M 1{Tm>F−1m (1−α/#M)}

FL choice: um,α=uα=sup
{
u, P(H0 )

(
∃m ∈M, Tm > F−1m (1− u)

)
≤ α

}
Φ̄FL
α = supm∈M φm,uα = supm∈M 1{Tm>F−1m (1−uα)}

Φ̄Bonf
α and Φ̄FL

α are both of level α, and Φ̄FL
α is less conservative than Φ̄Bonf

α
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Aggregated tests: goodness-of-fit
In the density model ([KD])

Pf (Φ̄FL
α = 0) ≤ β as soon as

d2
2 (Pf ,P0)>(1 + ε) inf

m∈M

{
‖f −ΠSm(f )‖22 + C

(√
m ln(#M/α)

n
+

m

n2

)}
/ Fromont, Laurent, Ann. Stat. (2006)

TakingM with #M' ln n ß loss in
√
ln ln n

For n large enough, s ∈ (0, 1],M =
{
2J , 0 ≤ J ≤ log2

(
n2/(ln ln n)3

)}
,

SRβd2
(
Φ̄FL
α ,
{
Pf , f ∈Bs,∞,∞(R) ∩ L∞(R ′)

} )
≤ C R

1
4s+1

(√
ln ln n/n

) 2s
4s+1

ß Φ̄FL
α is minimax adaptive with an unavoidable (/ Ingster (2000)) loss

the order of a
√
ln ln n factor.

ß Extension to test that f belongs to a translation/scale family: similar
results but with a loss of the order of a

√
ln n factor
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Poisson model X = {X1, . . . ,XNX } is a Poisson process on X = [0, 1],
with intensity f w.r.t. dµ = ndλ, whose distribution is
denoted by Pf , P = {Pf , f ∈ L2(R, λ)}.

Homogeneity test

(H0 ) Pf ∈ P0 = {Pf , f constant} against (H1 ) Pf 6∈ P0

Motivation: Detecting abnormal behaviors on the DNA sequence
ß Detecting alternative intensities with localized spikes

Minimax separation rate? d2(Pf ,Pg ) = ‖f − g‖2 (w.r.t. λ),
Bs,2,∞(R) (strong) Besov body, wBs′(R ′) weak Besov body
defined from the Haar basis {ϕ0, ψ(j ,k), j ∈ N, k ∈ {0, . . . , 2j − 1}}.
Bs,2,∞(R) =

{
f , ∀j ∈ N,

∑2j−1
k=0 〈f , ψ(j ,k)〉22 ≤ R22−2js

}
wBs′(R ′) =

{
f ,∀t > 0,

∑
j∈N
∑2j−1

k=0 〈f , ψ(j ,k)〉22 1〈f ,ψ(j,k)〉22≤t
≤ R ′2t

2s′
2s′+1

}
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

mSRα,β
d2

(
{Pf , f∈Bs,2,∞(R)∩wBs′(R ′)∩L∞(R ′′)}

)
/ Fromont, Laurent, Reynaud-Bouret, Ann. IHP (2011)
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0
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0.5

s = s′
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s = s′

2
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2s
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(ii)
( ln n

n

) s′
2s′+1

(iii)

s ′

s
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Aggregated homogeneity tests

Sm = 〈ϕ0, ψ(j ,k), (j , k) ∈ Lm〉, with
Lm ⊂ {(j , k), j ∈ N, k ∈ {1, . . . , 2j − 1}}, m ∈M

Collection of subsets of P: {P0,m ={Pf ,ΠSm(f ) is constant} ,m∈M}
Collection of hypotheses: {(H0,m ) P ∈ P0,m, m ∈M}

Collection of single tests:
{
φm,α = 1{

Tm>q
NX
m (1−α)

}, m ∈M}, with
Tm = 1

n2
∑

(j ,k)∈Lm
∑NX

i 6=i ′=1 ψ(j ,k)(Xi )ψ(j ,k)(X ′i )
est.
Ù ‖Π〈ψ(j,k), (j ,k)∈Lm〉(f )‖22

qn0m quantile function of L(H0) (Tm|NX = n0 ), which is known since

L(H0) (Tm|NX = n0 ) = L
( 1
n2
∑

(j ,k)∈Lm
∑n0

i 6=i ′=1 ψ(j ,k)(Ui )ψ(j ,k)(U ′i )
)
, with

(U1, . . . ,Un0) i.i.d. uniformly distributed (case [UD1] with Z = NX)
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Collection of individual levels: {um,α, m ∈M} ?

FLR choice: um,α = uNX
m,α, with

un0m,α = wm sup
{
u,P(H0 )

(
∃m ∈M,Tm > q

(n0)
m (1− wmu)

∣∣∣NX = n0
)
≤ α

}
,

(wm)m∈M positive weights such that
∑

m∈M wm ≤ 1

Φ̄FLR
α = supm∈M φm,um,α = supm∈M 1{

Tm>q
NX
m

(
1−uNX

m,α

)}

Dm = dim(Sm), Em =
∑

j/(j ,k)∈Lm 2j .
Then Φ̄FLR

α is of level α and Pf (Φ̄FLR
α = 0) ≤ β as soon as

d2
2 (Pf ,P0) >

infm∈M
{
‖f −ΠSm(f )‖22+C

(√
Dm ln(1/(wmα))

n + ln(1/(wmα))
n + Em ln2(1/(wmα))

n2

)}
Probabilistic tools: concentration inequalities (U statistics of order 2)
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Dm = dim(Sm), Em =
∑

j/(j ,k)∈Lm 2j .
Then Φ̄FLR

α is of level α and Pf (Φ̄FLR
α = 0) ≤ β as soon as

d2
2 (Pf ,P0) >

infm∈M
{
‖f −ΠSm(f )‖22+C

(√
Dm ln(1/(wmα))

n + ln(1/(wmα))
n + Em ln2(1/(wmα))

n2

)}
Which choice for {Sm, m ∈M} and (wm)m∈M ?

Classical collection of nested spaces: allows to detect intensities in
Bs,2,∞(R), Em ' Dm ⇒ wm = 1/#M possible ⇒ Φ̄FLR,nest

α minimax
adaptive with a loss ∼

√
ln ln n factor.

Need for a richer collection of nonnested spaces to detect intensities in
Bs,2,∞(R) ∩ wBs′(R ′) with s ≥ s ′/(2s ′ + 1), s ′ > 1/2 ⇒ #M large ⇒
other choice for wm ⇒ Φ̄FLR,nonnest

α minimax adaptive without any loss
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

0 0.5 1
0

0.25

0.5

s = s′

2s′+1

s = s′

2

(i) n−
2s

4s+1

Φ̄FLR,nest
α (loss

√
ln ln n)

(ii)
( ln n

n

) s′
2s′+1

Φ̄FLR,nonnest
α

(iii)

s ′

s
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Poisson model X = (X1,X2) is a pair of independent Poisson processes,
observed on X ⊂ Rd , with resp. intensities f1 and f2 (in
L1(X, λ) ∩ L∞(X)), w.r.t dµ = ndλ.
Pf1,f2 = joint distribution of X = (X1,X2).

(H0 ) f1 = f2 ⇔ P(f1,f2) ∈ P0 =
{
P(f1,f2), f1 = f2

}
against (H1 ) P(f1,f2) 6∈ P0

Motivations

Differential analysis of replication origins peaks
Spatial representativeness of services in public statistics

Notations

X1 = {X 1
1 , . . . ,X

1
N1
}, X2 = {X 2

1 , . . . ,X
2
N2
} (N1,N2 random),

X̄ = X1 ∪ X2 = {X1, . . . ,XN } with N = N1 + N2.
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Single kernel based test

Considering as above a subspace Sm = 〈bl , l ∈ Lm〉 (orthonormal basis) of
L2(X, λ), a natural idea is to introduce
(H0,m) Pf ∈ P0,m, with P0,m = {Pf , ΠSm(f1 − f2) = 0} ⊃ P0.

Unbiased estimator of n2‖ΠSm(f1 − f2)‖22:

Tm =
∑N

i 6=j=1
(∑

l∈Lm bl(Xi )bl(Xj)
)
ε0i ε

0
j , where

ε0i = 1 if Xi ∈ X1,
ε0i = −1 if Xi ∈ X2.

ß Generalization to Tm =
∑N

i 6=j=1 Km(Xi ,Xj)ε
0
i ε

0
j , where Km is a

symmetric kernel s. t.
∫
K 2
m(x , x ′)(f1 + f2)(x)(f1 + f2)(x ′)dν(x)dν(x ′)≤Dm

ß Unbiased estimator of n2〈Km[f1−f2],f1−f2〉2 with Km[f ](x)=〈Km(., x),f 〉2
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Possible choices for the kernel

[PK ] projection kernel Km(x , x ′) =
∑

l∈Lm bl(x)bl(x
′),

〈Km[f1 − f2], f1 − f2〉2 = ‖ΠSm(f1 − f2)‖22
[AK ] approximation kernel Km(x , x ′)=km

(
x1−x ′1
h1

, ...,
xd−x ′d
hd

)
/
∏

i=1...d hi ,
〈Km[f1 − f2], f1 − f2〉2 = 〈km ∗ (f1 − f2), f1 − f2〉2/

∏
i=1...d hi

[RK ] reproducing kernel Km(x , x ′) = 〈θKm(x), θKm(x ′)〉HKm
, θKm and

HKm feature function and RKHS space,
〈Km[f1 − f2], f1 − f2〉2 = ‖Km[f1]− Km[f2]‖2HKm

, Km[f1] and Km[f2]

mean embeddings of f1 and f2 in the RKHS if they are densities.

Single test: φm,α = 1{Tm>qm(1−α)}, qm to define

8 Problem: the distribution of Tm is not free from f1 = f2 under (H0 ) !
ß Wild bootstrap approach / Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013)
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Wild bootstrap approach in the density model

Classical Efron’s bootstrap

Empirical process: (Pn − P)(h) Ù (P∗n−Pn)(h)= 1
n

∑n
i=1(Mn,i−1)h(Xi )

/ Giné, Zinn (1990,1992)
Degenerate U-statistics: Un(h) = 1

n(n−1)

∑
i 6=j h(Xi ,Xj)

Ù U∗n (h)= 1
n(n−1)

∑
i 6=j h(Xi ,Xj)(Mn,i−1)(Mn,j−1) / Arcones, Giné (1992)

Wild bootstrap based on i.i.d. Rademacher variables (ε1, ..., εn)

Empirical process: (Pn − P)(h) Ù (P∗n − Pn)(h) = 1
n

∑n
i=1 εih(Xi )

/ Mammen (1992)
/ Fromont, Mach. Learn. (2007) for nonasymptotic results
Degenerate U-statistics: Un(h) = 1

n(n−1)

∑
i 6=j h(Xi ,Xj)

Ù U∗n (h) = 1
n(n−1)

∑
i 6=j h(Xi ,Xj)εiεj / Dehling Mikosch (1994)
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Wild bootstrap approach in the Poisson model

T ∗m =
∑

i 6=j Km(Xi ,Xj)εiεj ⇒ L(T ∗m|X̄) = L(H0)(Tm|X̄) [UD2]

qm = qX̄
m = quantile function of L(T ∗m|X̄) (Monte Carlo)

φm,α = 1{Tm>qX̄
m(1−α)} is of level α,

even when qX̄
m(1− α) is approximated by a Monte Carlo method!

/ Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013) / Fromont, HDR (2015)

Tool: key exchangeability lemma / Romano, Wolf (2005)
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Aggregated two-sample tests

Collection of subsets of P:
{P0,m ={Pf1,f2 , 〈Km[f1 − f2], f1 − f2〉2 = 0} ,m∈M}
Collection of hypotheses: {(H0,m ) P ∈ P0,m, m ∈M}

Collection of single tests:
{
φm,α = 1{Tm>qX̄

m(1−α)}, m ∈M
}

Collection of individual levels: {um,α, m ∈M} ?

FLR choice: um,α = uX̄
m,α, with

uX̄
m,α = wm sup

{
u,P(H0 )

(
∃m ∈M,T ∗m > qX̄

m(1− wmu)
∣∣∣X̄) ≤ α},

Φ̄FLR
α = supm∈M φm,um,α = supm∈M 1{Tm>qX̄

m(1−uX̄
m,α)}
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Oracle type result

The test Φ̄FLR
α is of level α and Pf1,f2(Φ̄FLR

α = 0) ≤ β, as soon as
‖f1 − f2‖22 ≥
infm∈M infr>0

{∥∥(f1 − f2)− r−1Km[f1 − f2]
∥∥2
2 + C

( √
Dm ln(1/(wmα))

rn

)}
.

/ Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013)

Tools: concentration inequalities & exponential inequalities for Rademacher chaos

Minimax adaptivity properties over:
{Pf1,f2 , (f1 − f2) ∈ Bs,2,∞(R) ∩ wBs′(R ′), f1, f2 ∈ L∞(R ′′)}
(loss ∼ (ln ln n) in the case (i), no loss in the case (ii))
subsets based on d dim. Sobolev and anisotropic Nikol’skii-Besov balls
(loss ∼ (ln ln n))

ß Parametric rate for the single tests based on characteristic kernels for the
weak distance ‖Km[f1]− Km[f2]‖HKm

⇒ choice of the distance?
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Aggregated tests: two-sample problems
In the density model ([UD3])

Density model X = (X1,X2) is a pair of independent sets of i.i.d. random
variables, with respective densities f1 and f2, w.r.t. λ.

(H0 ) f1 = f2 ⇔ P(f1,f2) ∈ P0 =
{
P(f1,f2), f1 = f2

}
against (H1 ) P(f1,f2) 6∈ P0

Aggregated tests based on kernels as in the Poisson process model
Tm =

∑N
i 6=j=1 Km(Xi ,Xj)ε

0
i ε

0
j , where if cN1,N2 = 1/(N1N2(N1 + N2 + 2)),

ε0i = aN1,N2 = (1/(N1(N1 − 1))− cN1,N2)1/2 if Xi ∈ X1,
ε0i = bN1,N2 = −aN2,N1 if Xi ∈ X2.

ß Tm + cN1,N2

∑N
i 6=j=1 Km(Xi ,Xj) unbiased estimator of 〈Km[f1−f2], f1−f2〉2

/ Fromont, Laurent, Lerasle, Reynaud-Bouret JMLR Proc., COLT (2012)

Another kind of possible (nonsymmetric) kernel based on km nearest
neighbors: Km(x , x ′) = 1{x ′km-nn of x}, with other marks

ß less complex collections ⇒ possible extension to functional data
/ Fromont, Tuleau, JMLR Proc., COLT (2006) / Fromont, Tuleau (2015)
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Aggregated tests: two-sample problems
In the density model ([UD3])

Bootstrap approach

Wild bootstrap ß asymptotically valid in the density model, but

Permutation ß "exact" bootstrap approach in the density model

εi = aN1,N2 if ΠN(i) ∈ {1, . . . ,N1},
εi = bN1,N2 if ΠN(i) ∈ {N1 + 1, . . . ,N},

ΠN random permutation uniformly distributed on SN .

T ∗m =
∑

i 6=j Km(Xi ,Xj)εiεj ⇒ L(H0)(T ∗m|X̄) = L(H0)(Tm|X̄) [UD3]

qm = qX̄
m = quantile function of L(T ∗m|X̄) (Monte Carlo)

φm,α = 1{Tm>qX̄
m(1−α)} is of level α,

even when qX̄
m(1− α) is approximated by a Monte Carlo method!
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Multiple tests
Parallel between aggregated tests and multiple tests

Collection of hypotheses: {(H0,m) P ∈ P0,m, m ∈M}
Aggregated tests in the case [KD]

Testing (H0) P ∈ P0 ⊂ ∩m∈MP0,m against (H1 ) P 6∈ P0

Minimax adaptive level α aggregated tests: Φ̄Bonf
α , Φ̄FL

α or Φ̄FLR
α

Multiple tests

Testing (H0,m) P ∈ P0,m simultaneously

Multiple tests whose FWER ≤ α: RBonf , RHolm, or Rminp

Under specific conditions,
Φ̄Bonf
α = 1{RBonf 6=∅} = 1{RHolm 6=∅} and Φ̄FL

α = 1{Rminp 6=∅}
/ Fromont, Lerasle, Reynaud-Bouret, Ann. Stat. (2015)
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Multiple tests
Multiple tests designed for particular concrete challenges

Example: Detecting synchronization periods between neural spike trains

ß Multiple test based on permutation independence tests for point processes
Case [UD2]

/ Albert, Bouret, Fromont, Reynaud-Bouret, Ann. Stat. (2015)

/ Albert, Bouret, Fromont, Reynaud-Bouret, Neural Comp. (minor rev, 2015)

Perspectives: Aggregation, study from the minimax point of view?

Introduction of a minimax theory for multiple tests
/ Fromont, Lerasle, Reynaud-Bouret, Ann. Stat. (2015)

Allows to prove that when they are based on strongly dependent p values,
RBonf can be clearly suboptimal, whereas Rminp is minimax adaptive...
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Conclusion

Aggregated or multiple tests based on a collection of single tests, defined
from test statistics Tm (or p-values pm) and associated critical values
obtained from Monte Carlo or resampling methods, that are justified from a
nonasymptotic point of view
⇒ implementable and adapted to moderate sample sizes

�

�

�



[KD] (Known Distr.) L(H0)(Tm) is known (parameter free)

[UD1] L(H0)(Tm|Z ) is known
Ú

[UD] (Unknown Distr.) Ù [UD2] ∃T ∗m, L(T ∗m|Z ) = L(H0)(Tm|Z )
Ø

[UD3] ∃T ∗m, L(H0)(T ∗m|Z ) = L(H0)(Tm|Z )
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Conclusion
[KD] Goodness-of-fit tests in the density model

/ Fromont, Laurent, Ann. Stat. (2006)
Detection of atmospheric nitrogen deposition in ecology

[KD] Periodic signal detection tests in a regression model
/ Fromont, Lévy-Leduc, ESAIM P&S (2006)
Target detection in laser vibrometry

[UD1] Homogenity tests in the Poisson model
/ Fromont, Laurent, Reynaud-Bouret, Ann. IHP (2011)
Detection of epidemics

[UD2] Two-sample tests in the Poisson model
/ Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013)
Differential analysis of replication origins peaks in genetics
Spatial representativeness of services in public statistics

[UD2] Independence tests for point processes
/ Albert, Bouret, Fromont, Reynaud-Bouret, Ann. Stat. (2013)
/ Albert, Bouret, Fromont, Reynaud-Bouret, Neural Comp. (minor rev, 2015)
Detection of dependence periods between spike trains in neuroscience

[UD3] Two-sample tests in density and regression models
/ Fromont, Laurent, Reynaud-Bouret, Lerasle, COLT (2012), Fromont, Tuleau (2015)
Comparison of functional data (in progress)

Magalie Fromont Habilitation à diriger des recherches 38 / 38


	Introduction
	Aggregated tests: goodness-of-fit
	In the density model
	In the Poisson model

	Aggregated tests:two-sample problems
	In the Poisson model ([UD2])

	Multiple tests
	Parallel between aggregated tests and multiple tests

	Conclusion

