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Introduction

Hypotheses testing theory for concrete problems

A theory in response to concrete challenges in various fields

o Laser vibrometry
@ Public statistics
o Genetics

@ Neuroscience
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Introduction
Single tests of single null hypotheses

Observed random variable: X, defined on (€2, .4, P), with distribution P.
Possible set of distributions for X defined from a nonparametric model: P.
Single null hypothesis defined through Py C P as (Hp) P € Po.
Alternative hypothesis (Hy) P € P\ Po.

A (single) nonrandomized test of (Hp) against (Hi) is a statistic ¢
depending on X:

@ with value 1 when X leads to reject (Hp) in favor of (Hi),

o with value 0 otherwise.
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Introduction

Single tests of single null hypotheses

Nonasymptotic minimax testing

e First kind error requirement (Neyman-Pearson): given « in (0, 1),
suppep, P(¢ = 1) :=Py) (¢ = 1) < a (level « test).
@ Second kind error requirement: given /3 in (0, 1),
suppep, P(¢ = 0) < 3, with Py C P\ Py as large as possible.
X In general, if a + 8 < 1, P1 can not be equal to P\ Po!
= Py ={P e P, d(P,Py) > r}, with r as small as possible,
for some distance d on P, and (realistic 7) restricted class of probability

distributions P’ C P.

Let ¢, be a level a test of (Hp) against (Hi).
The uniform separation rate of ¢, over P’ is defined as

SRS (¢a,P') = inf { r >0, suppcpr g(p.po)>r P(¢a =0) < 5} :
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Introduction

Single tests of single null hypotheses

Nonasymptotic minimax testing

A second kind error related criterion which allows to:

o Compare two level « tests

@ See whether a level « test is optimal over P/,
in the following minimax sense.

The minimax separation rate over P’ is defined by

mSR%? (P') = inf (o, of level oy SRS (¢, P').

A level a test ¢, is minimax over P/, if
SRy (¢a, ') < C(a, 8) mSRG” (P').

w= Parallel between the minimax hypothesis testing theory and
the minimax estimation theory

Magalie Fromont Habilitation a diriger des recherches

12 / 38




Introduction

Single tests of single null hypotheses

Nonasymptotic minimax testing: example in the density model

Density model | X = (Xi,...,X,) is a sample of n i.i.d. random
variables with distribution Pr of density f with re-
spect to the Lebesgue measure A on X = R,
P = {Pf, fe Lg(R, )\)}

Goodness-of-fit test: given a density fy € Lo(R, \),

(HO) f:fb@Pfe,POZ{be}against (H]_) f?éfb@Pfgpoz{Pfo}J

Minimax separation rate: d>(Pr, Pg) = ||f — g||2, Bs,00,00(R) Holder ball,

mSRG ({Pr. f € Baoo(R)})  n29/05+)
& Ingster (1993), Pouet (2002)
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Introduction

Single tests of single null hypotheses

Nonasymptotic minimax testing: example in the density model

Sn= <bm,k, k e Z>, with bm,k = \/E]I[k/m,(k—&—l)/m) for m e N\{O},
Ms,, orthogonal projection onto Sy, w.r.t. (.,.)2

(H07m) Pf S 7307,", with 'Po’m = {Pf, |_|5m(f — fb) = 0} D) 730.
Single test: ¢ = ]l{Tm>F,;1(1—a)}’ with

T = 51y ke Lorjet bk (X)bm (X)) + 113 — 2 327, /(X))
estimating ||Ms,,(f — fo)||3, Fm = c.d.f. of T, under (Hp)

®m, is a level « test such that Pr(¢m o = 0) < 3 as soon as

BP0 > (1+9) I = s, (3 + € (Y2500 4 )

& Fromont, Laurent, Ann. Stat. (2006)

Tools: concentration inequalities (U statistics of order 2, linear statistics)
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Introduction

Single tests of single null hypotheses

Nonasymptotic minimax testing: example in the density model

Bias term: for s € (0,1], f € Bsco.0o(R) = ||f — M5, (F)|*> < C(s)R?m—2¢

Minimax test: Take m such that R?m~25 ~ \/m/n < m =~ (R?n)?/(4s+1),

For n large,
1 —2s
SR, (dmyar {Pf, f € Bsso00(R) NLao(R)}) < C(s, v, B, R))R%+1 naei. J

X Problem: the test depends on s! A priori realistic choice of Bs o oo (R) 7

»= Test which does not depend on s but which is minimax or nearly minimax
over the class {Pr, € Bs oo,00(R) NLoo(R')} for every s?

A level « test ¢, is minimax adaptive over a collection of classes P/, if it
is minimax or nearly minimax over all the classes P’ in the collection.

= Aggregation of tests
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Introduction

Aggregated tests

o Collection of subsets of P: {Pom, me M}, Po C NmermPo,m

o Collection of hypotheses: {(Ho,m), me M}, (Hom)P € Pom

@ Collection of tests: &, = {(;5,,,,0, =141, 5qm(1-a)}» ME /\/l}
with suppep, P(¢ma =1) < a

o Collection of individual levels: U, = { um o, me M}

The aggregated test based on the collections ®, and U, is defined as

¢ —Sup¢ ma_sup]le m(1 m, o
T mem iy Ll

= Reject (Hp) if at least one ( Ho,m ) is rejected with ¢pm u, .,
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Introduction
Aggregated tests

Two concerns: level control + minimax adaptivity
e Minimax adaptivity: choice of T, (minimax single tests)
o Level control: choice of gm(1 — um.q)

Four different cases can be distinguished (Z is a statistic depending on X).

Notation: L4,(T) = distribution of T given Z,
L(Ho)(T|Z) = conditional distribution of T given Z under (Hp),
L(T|Z) = conditional distribution of T given Z

( [KD] (known istr.) L(Ho)(Tm) is known (parameter free) )
[UD1] L(4,)(Tm|Z) is known

[UD] (unknown Distr.) : [UD2] 3Ty, L(TH|Z) = LiHy)(TmlZ)
[UD3] 3T, Lito)(TlZ) = Lriy (Tl 2)

J
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Aggregated tests: goodness-of-fit
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Aggregated tests: goodness-of-fit
In the density model ([KD])

Sn= <bm,k7 k € Z>, with bm,k = \/E]l[k/m,(k—ﬁ—l)/m) for m € N\{O}

@ Collection of subsets of P: {Pom = {Ps, Ns, (f —f) =0}, me M}
e Collection of hypotheses: {(Hom) Pr € Pom, m € M}

o Collection of tests: {qﬁm,a = ]l{.,-m>,_-r;1(1_a)}, m € M}

o Collection of individual levels: {umqo, me M} ?

Bonferroni choice: v, o = o/#M

5Bonf _ =
S5 = SUP e Pmya/#M = SUPme M 1{Tm>Fn71(1—a/#M)} J

FL choice: uma=ua=sup{u, Pyo) (Ime M, T > F 1 (1—-u)) <a}

b FL
d)a = SUP e ¢m,ua = SUPmeMm ]l{Tm>F,,71(1—Ua)} J

®Bonf and &FL are both of level a, and ®fL is less conservative than 55"’”J
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Aggregated tests: goodness-of-fit
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Aggregated tests: goodness-of-fit
In the density model ([KD])

P¢(®FfL = 0) < 33 as soon as

B(Pr. Po)>(1+2) {Hf—nsm(f)ué e (W . ’")}

n2

inf
meM
& Fromont, Laurent, Ann. Stat. (2006)

Taking M with #M ~1Inn = lossin VInInn
For n large enough, s € (0,1], M = {27, 0 < J <log, (n?/(InInn)3) },

2s

SRG, (BFL, { Pr, £ €Ba e ne(R) NLeo(R) }) < € R (Vinlnn/n) =

= ®FL is minimax adaptive with an unavoidable (= Ingster (2000)) loss
the order of a v/InIn n factor.

= Extension to test that f belongs to a translation/scale family: similar
results but with a loss of the order of a v/In n factor
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Aggregated tests: goodness-of-fit
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Poisson model | X = {Xq,..., Xy, } is a Poisson process on X = [0, 1],
with intensity f w.r.t. du = nd)\, whose distribution is
denoted by Pr, P = {Pf, f € Lp(R,\)}.

Homogeneity test

(Ho) PrePy={Ps, fconstant} agint (H1) Pr¢& Po )

Motivation: Detecting abnormal behaviors on the DNA sequence
w Detecting alternative intensities with localized spikes

Minimax separation rate? d»(Pr, Pg) = ||f — g2 (w.r.t. A),
Bs.2,00(R) (strong) Besov body, wBs (R’) weak Besov body

defined from the Haar basis { o, YKy JEN, ke {0,...,2 —1}}.
Buaw(R) = { . i € N, S w003 < R27% )

- 2
WBS/(R/) - {f’Vt >0, ZJ'GN iJ:01<fa w(J,k)>% ]l<f,w(j,k)>§§t < Rl2t25’+1}
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

mSRZ;’B ({ P, fe BSQ@O(R)NWBs/(R’)ﬂ}LOO(R”)})

&> Fromont, Laurent, Reynaud-Bouret, Ann. IHP (2011)

0.5
| _ s
(i) n—ast! S = 2941
s E /,/’// ;
0.25 A (i) (lnTn)ﬁ
R
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0 05 1
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Aggregated homogeneity tests

Sm = (@0, ¥(j,k): U, k) € Lm), with
LnC{(,k),jeN,ke{l,....,2 —1}}, me M

o Collection of subsets of P: { Py m={Ps, s, (f) is constant} , me M}
o Collection of hypotheses: {(Ho,m) P € Pom, me M}

@ Collection of single tests: {qﬁm’a = ll{T - m € M} with

(1-a)}’

est.
T = 2 2 k)erm Sonki—1 Y X80 (X = 1My, Gageen (I3

g, quantile function of L4,y ( Tm|Nx = no ), which is known since

ﬁ(Ho) (Tm|Nx =no) = E(% Z(j,k)eﬁm 27;&;/:1 w(j,k)(Ui)T/J(j,k)(U,{))v with
(Ur,...,Up) i.i.d. uniformly distributed (case [UD1] with Z = Nx)
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Aggregated tests: goodness-of-fit
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

o Collection of individual levels: {umqo, me M} 7

FLR choice: up o = uﬂ’fa, with
UR o = Wi SUp {U,P(HO) (Elm EM, Ty > qf,?o)(l - Wmu)‘Nx = n0> < a},
(Wm)mem positive weights such that >\ wy, <1

&)SLR = SUP LM ¢m,um,a = SUPmem ]I{Tm>qu (1_U’I:’I?(a)}

D = dim(Sm), Em = 2Jj/(j k)ec, 2-
Then ®FLR is of level a and P¢(®FLR = 0) < 3 as soon as
d3(Ps,Po) >

infmer {1 —Ms, (F)|[3+C (L2200 000D) 10/ lene)) | BP0 (o)) |

n

v

Probabilistic tools: concentration inequalities (U statistics of order 2)
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Aggregated tests: goodness-of-fit
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

Then ®FLR is of level o and Pr(FLR = 0) < 3 as soon as
d22(Pf7P0) >
/D In(1/(Wma)) | In(1/(Wim m In?(1/(wm

n n2

infmeM

Which choice for {S,, me M} and (Wm)mem ?

@ Classical collection of nested spaces: allows to detect intensities in
B 2.00(R), Em = D = Wi, = 1/#M possible = ®E-5"" minimax
adaptive with a loss ~ v/InIn n factor.

@ Need for a richer collection of nonnested spaces to detect intensities in

Bs2.00(R)NwBgy(R') with s > s'/(2s' + 1),s' > 1/2 = #M large =

— cT>(I)[—_Lli’,nonnesl“

other choice for w,, minimax adaptive without any loss
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Aggregated tests: goodness-of-fit
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Aggregated tests: goodness-of-fit
In the Poisson model ([UD1])

0.5

0.25
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Aggregated tests:two-sample problems
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Poisson model | X = (X!, X?) is a pair of independent Poisson processes,
observed on X C RY, with resp. intensities f; and £ (in
L1(X,A) NLoo(X)), w.rt du = ndA.
Pr, r, = joint distribution of X = (X1, X?).

(Ho) fi_ = f-2 = P(f‘l,fz) e Po = {P(fhfz), f]_ = f’z} against (H]_) P(fhfz) Q POJ

Motivations

@ Differential analysis of replication origins peaks

@ Spatial representativeness of services in public statistics
Notations

Xt ={x{,... ,X,%,l}, X2 = {Xlz,...,X,%z} (N1, N> random),
X =XluXx? :{Xl,...,XN} with N = Ny + No.
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Single kernel based test

Considering as above a subspace S, = (b;,/ € L,) (orthonormal basis) of
Ly(X, \), a natural idea is to introduce

(Ho,m) Pr € Po,m, with Po.m = { P, MNs, (A —£H)=0} D Po.
Unbiased estimator of n?||Ms, (f — f)]|3:

9= 1if X; e X1,
Tm= Z,# 1(2,65 bi(Xi)bi(X ))E? where é)——l X € X2,

= Generalization to T,, = Z,I'\;Aj=1 Km(Xi, Xj)e0e?, where Ky is a
symmetric kernel s. t. [K2(x,x')(fi + f)(x)(A + £)(X')dv(x)dv(x') < Dp,
= Unbiased estimator of nAKy,[f— ], —f)2 with Kn[f](x)=(Km(., x),f)2
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Aggregated tests:two-sample problems
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Possible choices for the kernel

o [PK] projection kernel K (x,x") = >7,c, bi(x)bi(x),
(Kmlfi = f2], i — h)2 = |Ns,, (A = R)|3

o [AK] approximation kernel Km(x,x’):km(xlh_lxi s Xd;j‘/’ /1121 4 his
(Kmlfi = 2], i — f2)o = (km * (A — R), fi — B2)2/ [ ;=14 hi

o [RK] reproducing kernel Kn(x,x") = (0k,,(x), Ok,,(x') 3, Ok, and
Hk,, feature function and RKHS space,
(Kmlfi = o], i = ho)o = | Kl 1] = K[ 2] 13, . Kml[] and Kin[£o]
mean embeddings of f; and % in the RKHS if they are densities.

Single test: ¢m o = 1{7,>qn(1-a)}> 9m to define

X Problem: the distribution of T, is not free from f; = f, under (Hp) !
= \Wild bootstrap approach & Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013)
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Aggregated tests:two-sample problems
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Wild bootstrap approach in the density model

@ Classical Efron’s bootstrap
o Empirical process: (P, — P)(h) = (P:—P,)(h)=13"7_((Mn;—1)h(X;)
= Giné, Zinn (1990,1992)
o Degenerate U-statistics: Un(h) = 7oty i h(Xis X))
- U:(h) = ﬁZi;ﬁj h(X,', Xj)(/\/’n,,'fl)(M,,’jfl) & Arcones, Giné (1992)

e Wild bootstrap based on i.i.d. Rademacher variables (e1,...,£5)
o Empirical process: (P, — P)(h) = (P; — P,)(h) = 1 37 eih(X))
® Mammen (1992)
& Fromont, Mach. Learn. (2007) for nonasymptotic results
o Degenerate U—statistiCS' Un(h) = ﬁ > iz h(Xi, X))
- U*(h) (= 1) Z:;éj (X,',Xj)e,'ej © Dehling Mikosch (1994)
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Wild bootstrap approach in the Poisson model

T =iz Km(Xis Xj)eiej = L(Th|X) = Ly (TmlX)  [UD2] )

dm = g% = quantile function of £(T%|X) (Monte Carlo)

Oma = ]l{Tm>q)_((1fa)} is of level «,

even when gX (1 — ) is approximated by a Monte Carlo method!
© Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013) / Fromont, HDR (2015)

Tool: key exchangeability lemma & Romano, Wolf (2005)
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Aggregated two-sample tests

o Collection of subsets of P:
{Po,m:{Pfl,fga <Km[f1 - f2]7 fl - f2>2 - 0} ’ mEM}
o Collection of hypotheses: {(Hom) P € Po,m, me M}

@ Collection of single tests: {(ﬁma = ]l{Tm>q;((17a)}, me M}
o Collection of individual levels: {um o, me M} 7

FLR choice: umq = u), . with

uﬁ,a = W, sup {u,]P’(HO) (Elm eEM, T > qn)_(q(l - Wmu)‘)_() < a},

&)ELR = SUPmem ¢mvum,a = SUPmem ]l{Tm>q,);(,(1—U§,a)} J
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Aggregated tests: two-sample problems
In the Poisson model ([UD2])

Oracle type result

The test ®FLR is of level o and Py, f,(®FLR = 0) < 3, as soon as
Ih = 6l3 >
inf mea infrso { H (f—h) = r iKnlf — f2”|2 + C (—\/m ln(;/(w"’a))

& Fromont, Laurent, Reynaud-Bouret, Ann. Stat. (2013)

Tools: concentration inequalities & exponential inequalities for Rademacher chaos
Minimax adaptivity properties over:
° {Pfl,fzv (fl - f2) € Bs,2,oo(R) N WBS/(R/)a f17 f2 € ]Loo(RH)}
(loss ~ (InIn n) in the case (i), no loss in the case (ii))

@ subsets based on d dim. Sobolev and anisotropic Nikol'skii-Besov balls
(loss ~ (Inlnn))

= Parametric rate for the single tests based on characteristic kernels for the
weak distance ||Kiy[f1] — Kin[f2]||3,, = choice of the distance?
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Aggregated tests: two-sample problems
In the density model ([UD3])

X = (X!, X?) is a pair of independent sets of i.i.d. random
variables, with respective densities f; and f, w.r.t. A.

Density model

(Ho) fi=f & Pirp) € Po={Pinn) fi="f} s (H) Prs) & Po

Aggregated tests based on kernels as in the Poisson process model

T = Y01y Ki(Xi, X))e0%9, where if ey, v, = 1/(NyNo(Ny + Ny +2)),
E; = aNy,N, = (]_/(Nl(Nl — 1)) — C/\/l’[\/z)l/2 if X,' S Xl,

i
0 _ _ : 2
g = le,Ng = —an,,N,; if X; € X=.

= T+ CNyN, Zg’éj:l Km(Xi, Xj) unbiased estimator of (Ki[fi—£f], fi—f)2
&> Fromont, Laurent, Lerasle, Reynaud-Bouret JMLR Proc., COLT (2012)

o

Another kind of possible (nonsymmetric) kernel based on k, nearest
neighbors: Km(X,X/) = ]l{x/km—nn of x} with other marks
= |ess complex collections = possible extension to functional data

& Fromont, Tuleau, JMLR Proc., COLT (2006) /, Fromont, Tuleau-(2015)
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Aggregated tests: two-sample problems
In the density model ([UD3])

Bootstrap approach
Wild bootstrap = asymptotically valid in the density model, but

Permutation = "exact" bootstrap approach in the density model

€i = ANy, N if I'IN(i) S {1, ceey Nl},
gj = bN17N2 if nN(I) S {Nl +1,..., N},
My random permutation uniformly distributed on Gy.

To = 2z Km(Xis Xj)eiej = Liro)(TalX) = Loy (TmlX) - [UDI] |

m = q,)_f, = quantile function of £(T}%|X) (Monte Carlo)

dma = ]l{Tm>q§,(1—a)} is of level «,

even when gX (1 — ) is approximated by a Monte Carlo method!
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Multiple tests
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Multiple tests

Parallel between aggregated tests and multiple tests

Collection of hypotheses: {(Ho.m) P € Po,m, m € M}
Aggregated tests in the case [KD]

Testing (HO) P e PO C ﬂmEMPQm against (H]_) P ¢ PO J

- : . ®Bonf GHFL
Minimax adaptive level o aggregated tests: ®5°", &/ " or &
Multiple tests

Testing  (Ho,m) P € Pom simultaneously J

Multiple tests whose FWER < «: RBonf RHolm o g minp

Under specific conditions,
HBonf __ _ HFL .
¢a = ]].{RBonfiw} = 1{73"’"””7&@} and ¢a = ]].{Rmmp?é@}
&> Fromont, Lerasle, Reynaud-Bouret, Ann. Stat. (2015)
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Multiple tests
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Multiple tests

Multiple tests designed for particular concrete challenges

Example: Detecting synchronization periods between neural spike trains

= Multiple test based on permutation independence tests for point processes
Case [UD2]

& Albert, Bouret, Fromont, Reynaud-Bouret, Ann. Stat. (2015)

& Albert, Bouret, Fromont, Reynaud-Bouret, Neural Comp. (minor rev, 2015)
Perspectives: Aggregation, study from the minimax point of view?

Introduction of a minimax theory for multiple tests
& Fromont, Lerasle, Reynaud-Bouret, Ann. Stat. (2015)

Allows to prove that when they are based on strongly dependent p values,
RBo can be clearly suboptimal, whereas R™"P is minimax adaptive...
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Conclusion

Conclusion

Aggregated or multiple tests based on a collection of single tests, defined
from test statistics Tp, (or p-values p,) and associated critical values
obtained from Monte Carlo or resampling methods, that are justified from a
nonasymptotic point of view

= implementable and adapted to moderate sample sizes

( [KD] (known pistr.) L(Ho)(Tm) is known (parameter free) A
[UD1] L(#)(Tm|Z) is known
[UD] ooy = [UD2] 3T, £(T12) = Lri) (Tl 2)
L [UD3] 3T, Lirg)(TmlZ) = Lirg)(TmlZ)
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Conclusion

Conclusion

[KD] Goodness-of-fit tests in the density model
= Fromont, Laurent, Ann. Stat. (2006)
Detection of atmospheric nitrogen deposition in ecology

[KD] Periodic signal detection tests in a regression model
= Fromont, Lévy-Leduc, ESAIM P&S (2006)
Target detection in laser vibrometry

[UD1] Homogenity tests in the Poisson model
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